# Copyright 2018, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for GaussianAverageQuery.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np import tensorflow as tf from privacy.optimizers import gaussian_query def _run_query(query, records): """Executes query on the given set of records as a single sample. Args: query: A PrivateQuery to run. records: An iterable containing records to pass to the query. Returns: The result of the query. """ global_state = query.initial_global_state() params = query.derive_sample_params(global_state) sample_state = query.initial_sample_state(global_state, next(iter(records))) for record in records: sample_state = query.accumulate_record(params, sample_state, record) result, _ = query.get_query_result(sample_state, global_state) return result class GaussianQueryTest(tf.test.TestCase, parameterized.TestCase): def test_gaussian_sum_no_clip_no_noise(self): with self.cached_session() as sess: record1 = tf.constant([2.0, 0.0]) record2 = tf.constant([-1.0, 1.0]) query = gaussian_query.GaussianSumQuery( l2_norm_clip=10.0, stddev=0.0) query_result = _run_query(query, [record1, record2]) result = sess.run(query_result) expected = [1.0, 1.0] self.assertAllClose(result, expected) def test_gaussian_sum_with_clip_no_noise(self): with self.cached_session() as sess: record1 = tf.constant([-6.0, 8.0]) # Clipped to [-3.0, 4.0]. record2 = tf.constant([4.0, -3.0]) # Not clipped. query = gaussian_query.GaussianSumQuery( l2_norm_clip=5.0, stddev=0.0) query_result = _run_query(query, [record1, record2]) result = sess.run(query_result) expected = [1.0, 1.0] self.assertAllClose(result, expected) def test_gaussian_sum_with_noise(self): with self.cached_session() as sess: record1, record2 = 2.71828, 3.14159 stddev = 1.0 query = gaussian_query.GaussianSumQuery( l2_norm_clip=5.0, stddev=stddev) query_result = _run_query(query, [record1, record2]) noised_sums = [] for _ in xrange(1000): noised_sums.append(sess.run(query_result)) result_stddev = np.std(noised_sums) self.assertNear(result_stddev, stddev, 0.1) def test_gaussian_average_no_noise(self): with self.cached_session() as sess: record1 = tf.constant([5.0, 0.0]) # Clipped to [3.0, 0.0]. record2 = tf.constant([-1.0, 2.0]) # Not clipped. query = gaussian_query.GaussianAverageQuery( l2_norm_clip=3.0, sum_stddev=0.0, denominator=2.0) query_result = _run_query(query, [record1, record2]) result = sess.run(query_result) expected_average = [1.0, 1.0] self.assertAllClose(result, expected_average) def test_gaussian_average_with_noise(self): with self.cached_session() as sess: record1, record2 = 2.71828, 3.14159 sum_stddev = 1.0 denominator = 2.0 query = gaussian_query.GaussianAverageQuery( l2_norm_clip=5.0, sum_stddev=sum_stddev, denominator=denominator) query_result = _run_query(query, [record1, record2]) noised_averages = [] for _ in range(1000): noised_averages.append(sess.run(query_result)) result_stddev = np.std(noised_averages) avg_stddev = sum_stddev / denominator self.assertNear(result_stddev, avg_stddev, 0.1) @parameterized.named_parameters( ('type_mismatch', [1.0], (1.0,), TypeError), ('too_few_on_left', [1.0], [1.0, 1.0], ValueError), ('too_few_on_right', [1.0, 1.0], [1.0], ValueError)) def test_incompatible_records(self, record1, record2, error_type): query = gaussian_query.GaussianSumQuery(1.0, 0.0) with self.assertRaises(error_type): _run_query(query, [record1, record2]) if __name__ == '__main__': tf.test.main()