# Copyright 2019, The TensorFlow Privacy Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TensorFlow Privacy library.""" import sys # pylint: disable=g-import-not-at-top if hasattr(sys, 'skip_tf_privacy_import'): # Useful for standalone scripts. pass else: from privacy.analysis.privacy_ledger import GaussianSumQueryEntry from privacy.analysis.privacy_ledger import PrivacyLedger from privacy.analysis.privacy_ledger import QueryWithLedger from privacy.analysis.privacy_ledger import SampleEntry from privacy.dp_query.dp_query import DPQuery from privacy.dp_query.gaussian_query import GaussianAverageQuery from privacy.dp_query.gaussian_query import GaussianSumQuery from privacy.dp_query.nested_query import NestedQuery from privacy.dp_query.no_privacy_query import NoPrivacyAverageQuery from privacy.dp_query.no_privacy_query import NoPrivacySumQuery from privacy.dp_query.normalized_query import NormalizedQuery from privacy.dp_query.quantile_adaptive_clip_sum_query import QuantileAdaptiveClipSumQuery from privacy.dp_query.quantile_adaptive_clip_sum_query import QuantileAdaptiveClipAverageQuery from privacy.optimizers.dp_optimizer import DPAdagradGaussianOptimizer from privacy.optimizers.dp_optimizer import DPAdagradOptimizer from privacy.optimizers.dp_optimizer import DPAdamGaussianOptimizer from privacy.optimizers.dp_optimizer import DPAdamOptimizer from privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer from privacy.optimizers.dp_optimizer import DPGradientDescentOptimizer from privacy.bolt_on.models import BoltOnModel from privacy.bolt_on.optimizers import BoltOn from privacy.bolt_on.losses import StrongConvexMixin from privacy.bolt_on.losses import StrongConvexBinaryCrossentropy from privacy.bolt_on.losses import StrongConvexHuber