# Copyright 2019, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training a CNN on MNIST with Keras and the DP SGD optimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags from distutils.version import LooseVersion import numpy as np import tensorflow as tf from privacy.analysis.rdp_accountant import compute_rdp from privacy.analysis.rdp_accountant import get_privacy_spent from privacy.dp_query.gaussian_query import GaussianAverageQuery from privacy.optimizers.dp_optimizer import DPGradientDescentOptimizer if LooseVersion(tf.__version__) < LooseVersion('2.0.0'): GradientDescentOptimizer = tf.train.GradientDescentOptimizer else: GradientDescentOptimizer = tf.optimizers.SGD # pylint: disable=invalid-name flags.DEFINE_boolean( 'dpsgd', True, 'If True, train with DP-SGD. If False, ' 'train with vanilla SGD.') flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training') flags.DEFINE_float('noise_multiplier', 1.1, 'Ratio of the standard deviation to the clipping norm') flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm') flags.DEFINE_integer('batch_size', 250, 'Batch size') flags.DEFINE_integer('epochs', 60, 'Number of epochs') flags.DEFINE_integer( 'microbatches', 250, 'Number of microbatches ' '(must evenly divide batch_size)') flags.DEFINE_string('model_dir', None, 'Model directory') FLAGS = flags.FLAGS def compute_epsilon(steps): """Computes epsilon value for given hyperparameters.""" if FLAGS.noise_multiplier == 0.0: return float('inf') orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) sampling_probability = FLAGS.batch_size / 60000 rdp = compute_rdp(q=sampling_probability, noise_multiplier=FLAGS.noise_multiplier, steps=steps, orders=orders) # Delta is set to 1e-5 because MNIST has 60000 training points. return get_privacy_spent(orders, rdp, target_delta=1e-5)[0] def load_mnist(): """Loads MNIST and preprocesses to combine training and validation data.""" train, test = tf.keras.datasets.mnist.load_data() train_data, train_labels = train test_data, test_labels = test train_data = np.array(train_data, dtype=np.float32) / 255 test_data = np.array(test_data, dtype=np.float32) / 255 train_data = train_data.reshape(train_data.shape[0], 28, 28, 1) test_data = test_data.reshape(test_data.shape[0], 28, 28, 1) train_labels = np.array(train_labels, dtype=np.int32) test_labels = np.array(test_labels, dtype=np.int32) train_labels = tf.keras.utils.to_categorical(train_labels, num_classes=10) test_labels = tf.keras.utils.to_categorical(test_labels, num_classes=10) assert train_data.min() == 0. assert train_data.max() == 1. assert test_data.min() == 0. assert test_data.max() == 1. return train_data, train_labels, test_data, test_labels def main(unused_argv): tf.logging.set_verbosity(tf.logging.INFO) if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0: raise ValueError('Number of microbatches should divide evenly batch_size') # Load training and test data. train_data, train_labels, test_data, test_labels = load_mnist() # Define a sequential Keras model model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16, 8, strides=2, padding='same', activation='relu', input_shape=(28, 28, 1)), tf.keras.layers.MaxPool2D(2, 1), tf.keras.layers.Conv2D(32, 4, strides=2, padding='valid', activation='relu'), tf.keras.layers.MaxPool2D(2, 1), tf.keras.layers.Flatten(), tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(10) ]) if FLAGS.dpsgd: dp_average_query = GaussianAverageQuery( FLAGS.l2_norm_clip, FLAGS.l2_norm_clip * FLAGS.noise_multiplier, FLAGS.microbatches) optimizer = DPGradientDescentOptimizer( dp_average_query, FLAGS.microbatches, learning_rate=FLAGS.learning_rate, unroll_microbatches=True) # Compute vector of per-example loss rather than its mean over a minibatch. loss = tf.keras.losses.CategoricalCrossentropy( from_logits=True, reduction=tf.losses.Reduction.NONE) else: optimizer = GradientDescentOptimizer(learning_rate=FLAGS.learning_rate) loss = tf.keras.losses.CategoricalCrossentropy(from_logits=True) # Compile model with Keras model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy']) # Train model with Keras model.fit(train_data, train_labels, epochs=FLAGS.epochs, validation_data=(test_data, test_labels), batch_size=FLAGS.batch_size) # Compute the privacy budget expended. if FLAGS.dpsgd: eps = compute_epsilon(FLAGS.epochs * 60000 // FLAGS.batch_size) print('For delta=1e-5, the current epsilon is: %.2f' % eps) else: print('Trained with vanilla non-private SGD optimizer') if __name__ == '__main__': app.run(main)