# Copyright 2019, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Loss functions for bolton method""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.keras import losses from tensorflow.python.keras.utils import losses_utils from tensorflow.python.framework import ops as _ops from tensorflow.python.keras.regularizers import L1L2 from tensorflow.python.platform import tf_logging as logging class StrongConvexMixin: """ Strong Convex Mixin base class for any loss function that will be used with Bolton model. Subclasses must be strongly convex and implement the associated constants. They must also conform to the requirements of tf losses (see super class). For more details on the strong convexity requirements, see: Bolt-on Differential Privacy for Scalable Stochastic Gradient Descent-based Analytics by Xi Wu et. al. """ def radius(self): """Radius, R, of the hypothesis space W. W is a convex set that forms the hypothesis space. Returns: R """ raise NotImplementedError("Radius not implemented for StrongConvex Loss" "function: %s" % str(self.__class__.__name__)) def gamma(self): """Returns strongly convex parameter, gamma.""" raise NotImplementedError("Gamma not implemented for StrongConvex Loss" "function: %s" % str(self.__class__.__name__)) def beta(self, class_weight): """Smoothness, beta. Args: class_weight: the class weights as scalar or 1d tensor, where its dimensionality is equal to the number of outputs. Returns: Beta """ raise NotImplementedError("Beta not implemented for StrongConvex Loss" "function: %s" % str(self.__class__.__name__)) def lipchitz_constant(self, class_weight): """Lipchitz constant, L. Args: class_weight: class weights used Returns: L """ raise NotImplementedError("lipchitz constant not implemented for " "StrongConvex Loss" "function: %s" % str(self.__class__.__name__)) def kernel_regularizer(self): """Returns the kernel_regularizer to be used. Any subclass should override this method if they want a kernel_regularizer (if required for the loss function to be StronglyConvex. """ return None def max_class_weight(self, class_weight, dtype): """the maximum weighting in class weights (max value) as a scalar tensor Args: class_weight: class weights used dtype: the data type for tensor conversions. Returns: maximum class weighting as tensor scalar """ class_weight = _ops.convert_to_tensor_v2(class_weight, dtype) return tf.math.reduce_max(class_weight) class StrongConvexHuber(losses.Loss, StrongConvexMixin): """Strong Convex version of Huber loss using l2 weight regularization.""" def __init__(self, reg_lambda: float, C: float, radius_constant: float, delta: float, reduction: str = losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, dtype=tf.float32): """Constructor. Args: reg_lambda: Weight regularization constant C: Penalty parameter C of the loss term radius_constant: constant defining the length of the radius delta: delta value in huber loss. When to switch from quadratic to absolute deviation. reduction: reduction type to use. See super class name: Name of the loss instance dtype: tf datatype to use for tensor conversions. Returns: Loss values per sample. """ if C <= 0: raise ValueError('c: {0}, should be >= 0'.format(C)) if reg_lambda <= 0: raise ValueError("reg lambda: {0} must be positive".format(reg_lambda)) if radius_constant <= 0: raise ValueError('radius_constant: {0}, should be >= 0'.format( radius_constant )) if delta <= 0: raise ValueError('delta: {0}, should be >= 0'.format( delta )) self.C = C # pylint: disable=invalid-name self.delta = delta self.radius_constant = radius_constant self.dtype = dtype self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype) super(StrongConvexHuber, self).__init__( name='strongconvexhuber', reduction=reduction, ) def call(self, y_true, y_pred): """Computes loss Args: y_true: Ground truth values. One hot encoded using -1 and 1. y_pred: The predicted values. Returns: Loss values per sample. """ h = self.delta z = y_pred * y_true one = tf.constant(1, dtype=self.dtype) four = tf.constant(4, dtype=self.dtype) if z > one + h: return _ops.convert_to_tensor_v2(0, dtype=self.dtype) elif tf.math.abs(one - z) <= h: return one / (four * h) * tf.math.pow(one + h - z, 2) return one - z # elif: z < one - h def radius(self): """See super class.""" return self.radius_constant / self.reg_lambda def gamma(self): """See super class.""" return self.reg_lambda def beta(self, class_weight): """See super class.""" max_class_weight = self.max_class_weight(class_weight, self.dtype) delta = _ops.convert_to_tensor_v2(self.delta, dtype=self.dtype ) return self.C * max_class_weight / (delta * tf.constant(2, dtype=self.dtype)) + \ self.reg_lambda def lipchitz_constant(self, class_weight): """See super class.""" # if class_weight is provided, # it should be a vector of the same size of number of classes max_class_weight = self.max_class_weight(class_weight, self.dtype) lc = self.C * max_class_weight + \ self.reg_lambda * self.radius() return lc def kernel_regularizer(self): """Return l2 loss using 0.5*reg_lambda as the l2 term (as desired). L2 regularization is required for this loss function to be strongly convex. Returns: The L2 regularizer layer for this loss function, with regularizer constant set to half the 0.5 * reg_lambda. """ return L1L2(l2=self.reg_lambda/2) class StrongConvexBinaryCrossentropy( losses.BinaryCrossentropy, StrongConvexMixin ): """Strongly Convex BinaryCrossentropy loss using l2 weight regularization.""" def __init__(self, reg_lambda: float, C: float, radius_constant: float, from_logits: bool = True, label_smoothing: float = 0, reduction: str = losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, dtype=tf.float32): """ Args: reg_lambda: Weight regularization constant C: Penalty parameter C of the loss term radius_constant: constant defining the length of the radius reduction: reduction type to use. See super class from_logits: True if the input are unscaled logits. False if they are already scaled. label_smoothing: amount of smoothing to perform on labels relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x). Note, the impact of this parameter's effect on privacy is not known and thus the default should be used. name: Name of the loss instance dtype: tf datatype to use for tensor conversions. """ if label_smoothing != 0: logging.warning('The impact of label smoothing on privacy is unknown. ' 'Use label smoothing at your own risk as it may not ' 'guarantee privacy.') if reg_lambda <= 0: raise ValueError("reg lambda: {0} must be positive".format(reg_lambda)) if C <= 0: raise ValueError('c: {0}, should be >= 0'.format(C)) if radius_constant <= 0: raise ValueError('radius_constant: {0}, should be >= 0'.format( radius_constant )) self.dtype = dtype self.C = C # pylint: disable=invalid-name self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype) super(StrongConvexBinaryCrossentropy, self).__init__( reduction=reduction, name='strongconvexbinarycrossentropy', from_logits=from_logits, label_smoothing=label_smoothing, ) self.radius_constant = radius_constant def call(self, y_true, y_pred): """Computes loss Args: y_true: Ground truth values. y_pred: The predicted values. Returns: Loss values per sample. """ loss = super(StrongConvexBinaryCrossentropy, self).call(y_true, y_pred) loss = loss * self.C return loss def radius(self): """See super class.""" return self.radius_constant / self.reg_lambda def gamma(self): """See super class.""" return self.reg_lambda def beta(self, class_weight): """See super class.""" max_class_weight = self.max_class_weight(class_weight, self.dtype) return self.C * max_class_weight + self.reg_lambda def lipchitz_constant(self, class_weight): """See super class.""" max_class_weight = self.max_class_weight(class_weight, self.dtype) return self.C * max_class_weight + self.reg_lambda * self.radius() def kernel_regularizer(self): """Return l2 loss using 0.5*reg_lambda as the l2 term (as desired). L2 regularization is required for this loss function to be strongly convex. Returns: The L2 regularizer layer for this loss function, with regularizer constant set to half the 0.5 * reg_lambda. """ return L1L2(l2=self.reg_lambda/2) # class StrongConvexSparseCategoricalCrossentropy( # losses.CategoricalCrossentropy, # StrongConvexMixin # ): # """ # Strong Convex version of CategoricalCrossentropy loss using l2 weight # regularization. # """ # # def __init__(self, # reg_lambda: float, # C: float, # radius_constant: float, # from_logits: bool = True, # label_smoothing: float = 0, # reduction: str = losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, # name: str = 'binarycrossentropy', # dtype=tf.float32): # """ # Args: # reg_lambda: Weight regularization constant # C: Penalty parameter C of the loss term # radius_constant: constant defining the length of the radius # reduction: reduction type to use. See super class # label_smoothing: amount of smoothing to perform on labels # relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x) # name: Name of the loss instance # dtype: tf datatype to use for tensor conversions. # """ # if reg_lambda <= 0: # raise ValueError("reg lambda: {0} must be positive".format(reg_lambda)) # if C <= 0: # raise ValueError('c: {0}, should be >= 0'.format(C)) # if radius_constant <= 0: # raise ValueError('radius_constant: {0}, should be >= 0'.format( # radius_constant # )) # # self.C = C # self.dtype = dtype # self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype) # super(StrongConvexSparseCategoricalCrossentropy, self).__init__( # reduction=reduction, # name=name, # from_logits=from_logits, # label_smoothing=label_smoothing, # ) # self.radius_constant = radius_constant # # def call(self, y_true, y_pred): # """Compute loss # # Args: # y_true: Ground truth values. # y_pred: The predicted values. # # Returns: # Loss values per sample. # """ # loss = super() # loss = loss * self.C # return loss # # def radius(self): # """See super class. # """ # return self.radius_constant / self.reg_lambda # # def gamma(self): # """See super class. # """ # return self.reg_lambda # # def beta(self, class_weight): # """See super class. # """ # max_class_weight = self.max_class_weight(class_weight, self.dtype) # return self.C * max_class_weight + self.reg_lambda # # def lipchitz_constant(self, class_weight): # """See super class. # """ # max_class_weight = self.max_class_weight(class_weight, self.dtype) # return self.C * max_class_weight + self.reg_lambda * self.radius() # # def kernel_regularizer(self): # """ # l2 loss using reg_lambda as the l2 term (as desired). Required for # this loss function to be strongly convex. # :return: # """ # return L1L2(l2=self.reg_lambda) # # class StrongConvexSparseCategoricalCrossentropy( # losses.SparseCategoricalCrossentropy, # StrongConvexMixin # ): # """ # Strong Convex version of SparseCategoricalCrossentropy loss using l2 weight # regularization. # """ # # def __init__(self, # reg_lambda: float, # C: float, # radius_constant: float, # from_logits: bool = True, # label_smoothing: float = 0, # reduction: str = losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, # name: str = 'binarycrossentropy', # dtype=tf.float32): # """ # Args: # reg_lambda: Weight regularization constant # C: Penalty parameter C of the loss term # radius_constant: constant defining the length of the radius # reduction: reduction type to use. See super class # label_smoothing: amount of smoothing to perform on labels # relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x) # name: Name of the loss instance # dtype: tf datatype to use for tensor conversions. # """ # if reg_lambda <= 0: # raise ValueError("reg lambda: {0} must be positive".format(reg_lambda)) # if C <= 0: # raise ValueError('c: {0}, should be >= 0'.format(C)) # if radius_constant <= 0: # raise ValueError('radius_constant: {0}, should be >= 0'.format( # radius_constant # )) # # self.C = C # self.dtype = dtype # self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype) # super(StrongConvexHuber, self).__init__(reduction=reduction, # name=name, # from_logits=from_logits, # label_smoothing=label_smoothing, # ) # self.radius_constant = radius_constant # # def call(self, y_true, y_pred): # """Compute loss # # Args: # y_true: Ground truth values. # y_pred: The predicted values. # # Returns: # Loss values per sample. # """ # loss = super() # loss = loss * self.C # return loss # # def radius(self): # """See super class. # """ # return self.radius_constant / self.reg_lambda # # def gamma(self): # """See super class. # """ # return self.reg_lambda # # def beta(self, class_weight): # """See super class. # """ # max_class_weight = self.max_class_weight(class_weight, self.dtype) # return self.C * max_class_weight + self.reg_lambda # # def lipchitz_constant(self, class_weight): # """See super class. # """ # max_class_weight = self.max_class_weight(class_weight, self.dtype) # return self.C * max_class_weight + self.reg_lambda * self.radius() # # def kernel_regularizer(self): # """ # l2 loss using reg_lambda as the l2 term (as desired). Required for # this loss function to be strongly convex. # :return: # """ # return L1L2(l2=self.reg_lambda) # # # class StrongConvexCategoricalCrossentropy( # losses.CategoricalCrossentropy, # StrongConvexMixin # ): # """ # Strong Convex version of CategoricalCrossentropy loss using l2 weight # regularization. # """ # # def __init__(self, # reg_lambda: float, # C: float, # radius_constant: float, # from_logits: bool = True, # label_smoothing: float = 0, # reduction: str = losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, # name: str = 'binarycrossentropy', # dtype=tf.float32): # """ # Args: # reg_lambda: Weight regularization constant # C: Penalty parameter C of the loss term # radius_constant: constant defining the length of the radius # reduction: reduction type to use. See super class # label_smoothing: amount of smoothing to perform on labels # relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x) # name: Name of the loss instance # dtype: tf datatype to use for tensor conversions. # """ # if reg_lambda <= 0: # raise ValueError("reg lambda: {0} must be positive".format(reg_lambda)) # if C <= 0: # raise ValueError('c: {0}, should be >= 0'.format(C)) # if radius_constant <= 0: # raise ValueError('radius_constant: {0}, should be >= 0'.format( # radius_constant # )) # # self.C = C # self.dtype = dtype # self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype) # super(StrongConvexHuber, self).__init__(reduction=reduction, # name=name, # from_logits=from_logits, # label_smoothing=label_smoothing, # ) # self.radius_constant = radius_constant # # def call(self, y_true, y_pred): # """Compute loss # # Args: # y_true: Ground truth values. # y_pred: The predicted values. # # Returns: # Loss values per sample. # """ # loss = super() # loss = loss * self.C # return loss # # def radius(self): # """See super class. # """ # return self.radius_constant / self.reg_lambda # # def gamma(self): # """See super class. # """ # return self.reg_lambda # # def beta(self, class_weight): # """See super class. # """ # max_class_weight = self.max_class_weight(class_weight, self.dtype) # return self.C * max_class_weight + self.reg_lambda # # def lipchitz_constant(self, class_weight): # """See super class. # """ # max_class_weight = self.max_class_weight(class_weight, self.dtype) # return self.C * max_class_weight + self.reg_lambda * self.radius() # # def kernel_regularizer(self): # """ # l2 loss using reg_lambda as the l2 term (as desired). Required for # this loss function to be strongly convex. # :return: # """ # return L1L2(l2=self.reg_lambda)