# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Training a deep NN on MovieLens with differentially private Adam optimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags import numpy as np import tensorflow as tf from scipy.stats import norm from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent from tensorflow_privacy.privacy.optimizers import dp_optimizer from privacy_accountants import * #### FLAGS tf.flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, ' 'train with vanilla SGD.') tf.flags.DEFINE_float('learning_rate', .01, 'Learning rate for training') tf.flags.DEFINE_float('noise_multiplier', 0.55, 'Ratio of the standard deviation to the clipping norm') tf.flags.DEFINE_float('l2_norm_clip', 5, 'Clipping norm') tf.flags.DEFINE_integer('epochs', 25, 'Number of epochs') tf.flags.DEFINE_integer('max_mu', 2, 'GDP upper limit') tf.flags.DEFINE_string('model_dir', None, 'Model directory') FLAGS = tf.flags.FLAGS microbatches=10000 np.random.seed(0) tf.set_random_seed(0) n_users=6040 n_movies=3706 def nn_model_fn(features, labels, mode): # Adapted from https://github.com/hexiangnan/neural_collaborative_filtering n_latent_factors_user = 10 n_latent_factors_movie = 10 n_latent_factors_mf = 5 user_input = tf.reshape(features['user'], [-1,1]) item_input = tf.reshape(features['movie'], [-1,1]) mf_embedding_user = tf.keras.layers.Embedding(n_users,n_latent_factors_mf,input_length=1) mf_embedding_item = tf.keras.layers.Embedding(n_movies,n_latent_factors_mf,input_length=1) mlp_embedding_user = tf.keras.layers.Embedding(n_users,n_latent_factors_user,input_length=1) mlp_embedding_item = tf.keras.layers.Embedding(n_movies,n_latent_factors_movie,input_length=1) # GMF part # Flatten the embedding vector as latent features in GMF mf_user_latent = tf.keras.layers.Flatten()(mf_embedding_user(user_input)) mf_item_latent = tf.keras.layers.Flatten()(mf_embedding_item(item_input)) # Element-wise multiply mf_vector = tf.keras.layers.multiply([mf_user_latent, mf_item_latent]) # MLP part # Flatten the embedding vector as latent features in MLP mlp_user_latent = tf.keras.layers.Flatten()(mlp_embedding_user(user_input)) mlp_item_latent = tf.keras.layers.Flatten()(mlp_embedding_item(item_input)) # Concatenation of two latent features mlp_vector = tf.keras.layers.concatenate([mlp_user_latent, mlp_item_latent]) predict_vector = tf.keras.layers.concatenate([mf_vector, mlp_vector]) logits = tf.keras.layers.Dense(5)(predict_vector) # Calculate loss as a vector (to support microbatches in DP-SGD). vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits) # Define mean of loss across minibatch (for reporting through tf.Estimator). scalar_loss = tf.reduce_mean(vector_loss) # Configure the training op (for TRAIN mode). if mode == tf.estimator.ModeKeys.TRAIN: if FLAGS.dpsgd: # Use DP version of GradientDescentOptimizer. Other optimizers are # available in dp_optimizer. Most optimizers inheriting from # tf.train.Optimizer should be wrappable in differentially private # counterparts by calling dp_optimizer.optimizer_from_args(). optimizer = dp_optimizer.DPAdamGaussianOptimizer( l2_norm_clip=FLAGS.l2_norm_clip, noise_multiplier=FLAGS.noise_multiplier, num_microbatches=microbatches, learning_rate=FLAGS.learning_rate) opt_loss = vector_loss else: optimizer = tf.train.AdamOptimizer( learning_rate=FLAGS.learning_rate) opt_loss = scalar_loss global_step = tf.train.get_global_step() train_op = optimizer.minimize(loss=opt_loss, global_step=global_step) # In the following, we pass the mean of the loss (scalar_loss) rather than # the vector_loss because tf.estimator requires a scalar loss. This is only # used for evaluation and debugging by tf.estimator. The actual loss being # minimized is opt_loss defined above and passed to optimizer.minimize(). return tf.estimator.EstimatorSpec(mode=mode, loss=scalar_loss, train_op=train_op) # Add evaluation metrics (for EVAL mode). elif mode == tf.estimator.ModeKeys.EVAL: eval_metric_ops = { 'rmse': tf.metrics.root_mean_squared_error( labels=tf.cast(labels, tf.float32), predictions=tf.tensordot(a=tf.nn.softmax(logits,axis=1),b=tf.constant(np.array([0,1,2,3,4]),dtype=tf.float32),axes=1)) } return tf.estimator.EstimatorSpec(mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops) def load_adult(): import pandas as pd import numpy as np data = pd.read_csv('ratings.dat', sep='::', header=None,names=["userId", "movieId", "rating", "timestamp"]) n_users=len(set(data['userId'])) n_movies=len(set(data['movieId'])) print('number of movie: ',n_movies) print('number of user: ',n_users) # give unique dense movie index to movieId from scipy.stats import rankdata data['movieIndex']=rankdata(data['movieId'], method='dense') # minus one to reduce the minimum value to 0, which is the start of col index print('number of ratings:',data.shape[0]) print('percentage of sparsity:',(1-data.shape[0]/n_users/n_movies)*100,'%') from sklearn.model_selection import train_test_split train,test=train_test_split(data,test_size=0.2,random_state=100) return train.values-1, test.values-1, np.mean(train['rating']) def main(unused_argv): tf.logging.set_verbosity(3) # Load training and test data. train_data, test_data, mean = load_adult() # Instantiate the tf.Estimator. adult_classifier = tf.estimator.Estimator(model_fn=nn_model_fn, model_dir=FLAGS.model_dir) # Create tf.Estimator input functions for the training and test data. eval_input_fn = tf.estimator.inputs.numpy_input_fn( x={'user': test_data[:,0], 'movie': test_data[:,4]}, y=test_data[:,2], num_epochs=1, shuffle=False) # Training loop. steps_per_epoch = 800167 // 10000 test_accuracy_list = [] for epoch in range(1, FLAGS.epochs + 1): np.random.seed(epoch) for step in range(steps_per_epoch): tf.set_random_seed(0) whether=np.random.random_sample(800167)>(1-10000/800167) subsampling=[i for i in np.arange(800167) if whether[i]] global microbatches microbatches=len(subsampling) train_input_fn = tf.estimator.inputs.numpy_input_fn( x={'user': train_data[subsampling,0], 'movie': train_data[subsampling,4]}, y=train_data[subsampling,2], batch_size=len(subsampling), num_epochs=1, shuffle=True) # Train the model for one step. adult_classifier.train(input_fn=train_input_fn, steps=1) # Evaluate the model and print results eval_results = adult_classifier.evaluate(input_fn=eval_input_fn) test_accuracy = eval_results['rmse'] test_accuracy_list.append(test_accuracy) print('Test RMSE after %d epochs is: %.3f' % (epoch, test_accuracy)) # Compute the privacy budget expended so far. if FLAGS.dpsgd: eps = compute_epsP(epoch,FLAGS.noise_multiplier,800167,10000,1e-6) mu= compute_muP(epoch,FLAGS.noise_multiplier,800167,10000) print('For delta=1e-6, the current epsilon is: %.2f' % eps) print('For delta=1e-6, the current mu is: %.2f' % mu) if mu>FLAGS.max_mu: break else: print('Trained with vanilla non-private SGD optimizer') if __name__ == '__main__': tf.app.run()