# Copyright 2018, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for differentially private optimizers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np import tensorflow as tf from privacy.optimizers import dp_adam from privacy.optimizers import dp_gradient_descent def loss(val0, val1): """Loss function that is minimized at the mean of the input points.""" return 0.5 * tf.reduce_sum(tf.squared_difference(val0, val1), axis=1) class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase): # Parameters for testing: optimizer, nb_microbatches, expected answer. @parameterized.named_parameters( ('DPGradientDescent 1', dp_gradient_descent.DPGradientDescentOptimizer, 1, [-10.0, -10.0]), ('DPGradientDescent 2', dp_gradient_descent.DPGradientDescentOptimizer, 2, [-5.0, -5.0]), ('DPGradientDescent 4', dp_gradient_descent.DPGradientDescentOptimizer, 4, [-2.5, -2.5]), ('DPAdam 1', dp_adam.DPAdamOptimizer, 1, [-10.0, -10.0]), ('DPAdam 2', dp_adam.DPAdamOptimizer, 2, [-5.0, -5.0]), ('DPAdam 4', dp_adam.DPAdamOptimizer, 4, [-2.5, -2.5])) def testBaseline(self, cls, nb_microbatches, expected_answer): with self.cached_session() as sess: var0 = tf.Variable([1.0, 2.0]) data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]]) opt = cls(learning_rate=2.0, nb_microbatches=nb_microbatches) self.evaluate(tf.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) # Expected gradient is sum of differences divided by number of # microbatches. gradient_op = opt.compute_gradients(loss(data0, var0), [var0]) grads_and_vars = sess.run(gradient_op) self.assertAllCloseAccordingToType(expected_answer, grads_and_vars[0][0]) @parameterized.named_parameters( ('DPGradientDescent', dp_gradient_descent.DPGradientDescentOptimizer), ('DPAdam', dp_adam.DPAdamOptimizer)) def testClippingNorm(self, cls): with self.cached_session() as sess: var0 = tf.Variable([0.0, 0.0]) data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]]) opt = cls(learning_rate=2.0, l2_norm_clip=1.0, nb_microbatches=1) self.evaluate(tf.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([0.0, 0.0], self.evaluate(var0)) # Expected gradient is sum of differences. gradient_op = opt.compute_gradients(loss(data0, var0), [var0]) grads_and_vars = sess.run(gradient_op) self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0]) @parameterized.named_parameters( ('DPGradientDescent', dp_gradient_descent.DPGradientDescentOptimizer), ('DPAdam', dp_adam.DPAdamOptimizer)) def testNoiseMultiplier(self, cls): with self.cached_session() as sess: var0 = tf.Variable([0.0]) data0 = tf.Variable([[0.0]]) opt = cls( learning_rate=2.0, l2_norm_clip=4.0, noise_multiplier=2.0, nb_microbatches=1) self.evaluate(tf.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([0.0], self.evaluate(var0)) gradient_op = opt.compute_gradients(loss(data0, var0), [var0]) grads = [] for _ in xrange(1000): grads_and_vars = sess.run(gradient_op) grads.append(grads_and_vars[0][0]) # Test standard deviation is close to l2_norm_clip * noise_multiplier. self.assertNear(np.std(grads), 2.0 * 4.0, 0.5) if __name__ == '__main__': tf.test.main()