# Copyright 2019, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training a CNN on MNIST with Keras and the DP SGD optimizer.""" from absl import app from absl import flags from absl import logging import numpy as np import tensorflow as tf from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer flags.DEFINE_boolean( 'dpsgd', True, 'If True, train with DP-SGD. If False, ' 'train with vanilla SGD.') flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training') flags.DEFINE_float('noise_multiplier', 0.1, 'Ratio of the standard deviation to the clipping norm') flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm') flags.DEFINE_integer('batch_size', 250, 'Batch size') flags.DEFINE_integer('epochs', 60, 'Number of epochs') flags.DEFINE_integer( 'microbatches', 250, 'Number of microbatches ' '(must evenly divide batch_size)') flags.DEFINE_string('model_dir', None, 'Model directory') FLAGS = flags.FLAGS def compute_epsilon(steps): """Computes epsilon value for given hyperparameters.""" if FLAGS.noise_multiplier == 0.0: return float('inf') orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) sampling_probability = FLAGS.batch_size / 60000 rdp = compute_rdp( q=sampling_probability, noise_multiplier=FLAGS.noise_multiplier, steps=steps, orders=orders) # Delta is set to 1e-5 because MNIST has 60000 training points. return get_privacy_spent(orders, rdp, target_delta=1e-5)[0] def load_mnist(): """Loads MNIST and preprocesses to combine training and validation data.""" train, test = tf.keras.datasets.mnist.load_data() train_data, train_labels = train test_data, test_labels = test train_data = np.array(train_data, dtype=np.float32) / 255 test_data = np.array(test_data, dtype=np.float32) / 255 train_data = train_data.reshape((train_data.shape[0], 28, 28, 1)) test_data = test_data.reshape((test_data.shape[0], 28, 28, 1)) train_labels = np.array(train_labels, dtype=np.int32) test_labels = np.array(test_labels, dtype=np.int32) train_labels = tf.keras.utils.to_categorical(train_labels, num_classes=10) test_labels = tf.keras.utils.to_categorical(test_labels, num_classes=10) assert train_data.min() == 0. assert train_data.max() == 1. assert test_data.min() == 0. assert test_data.max() == 1. return train_data, train_labels, test_data, test_labels def main(unused_argv): logging.set_verbosity(logging.INFO) if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0: raise ValueError('Number of microbatches should divide evenly batch_size') # Load training and test data. train_data, train_labels, test_data, test_labels = load_mnist() # Define a sequential Keras model model = tf.keras.Sequential([ tf.keras.layers.Conv2D( 16, 8, strides=2, padding='same', activation='relu', input_shape=(28, 28, 1)), tf.keras.layers.MaxPool2D(2, 1), tf.keras.layers.Conv2D( 32, 4, strides=2, padding='valid', activation='relu'), tf.keras.layers.MaxPool2D(2, 1), tf.keras.layers.Flatten(), tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(10) ]) if FLAGS.dpsgd: optimizer = DPKerasSGDOptimizer( l2_norm_clip=FLAGS.l2_norm_clip, noise_multiplier=FLAGS.noise_multiplier, num_microbatches=FLAGS.microbatches, learning_rate=FLAGS.learning_rate) # Compute vector of per-example loss rather than its mean over a minibatch. loss = tf.keras.losses.CategoricalCrossentropy( from_logits=True, reduction=tf.losses.Reduction.NONE) else: optimizer = tf.keras.optimizers.SGD(learning_rate=FLAGS.learning_rate) loss = tf.keras.losses.CategoricalCrossentropy(from_logits=True) # Compile model with Keras model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy']) # Train model with Keras model.fit( train_data, train_labels, epochs=FLAGS.epochs, validation_data=(test_data, test_labels), batch_size=FLAGS.batch_size) # Compute the privacy budget expended. if FLAGS.dpsgd: eps = compute_epsilon(FLAGS.epochs * 60000 // FLAGS.batch_size) print('For delta=1e-5, the current epsilon is: %.2f' % eps) else: print('Trained with vanilla non-private SGD optimizer') if __name__ == '__main__': app.run(main)