# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Auditing a model which computes the mean of a synthetic dataset. This gives an example for instrumenting the auditor to audit a user-given sample.""" import numpy as np import tensorflow.compat.v1 as tf from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent from tensorflow_privacy.privacy.optimizers import dp_optimizer_vectorized from absl import app from absl import flags import audit #### FLAGS FLAGS = flags.FLAGS flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training') flags.DEFINE_float('noise_multiplier', 1.1, 'Ratio of the standard deviation to the clipping norm') flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm') flags.DEFINE_integer('batch_size', 250, 'Batch size') flags.DEFINE_integer('d', 250, 'Data dimension') flags.DEFINE_integer('epochs', 1, 'Number of epochs') flags.DEFINE_integer( 'microbatches', 250, 'Number of microbatches ' '(must evenly divide batch_size)') flags.DEFINE_string('attack_type', "clip_aware", 'clip_aware or bkdr') flags.DEFINE_integer('num_trials', 100, 'Number of trials for auditing') flags.DEFINE_float('attack_l2_norm', 10, 'Size of poisoning data') flags.DEFINE_float('alpha', 0.05, '1-confidence') FLAGS = flags.FLAGS def compute_epsilon(train_size): """Computes epsilon value for given hyperparameters.""" if FLAGS.noise_multiplier == 0.0: return float('inf') orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) sampling_probability = FLAGS.batch_size / train_size steps = FLAGS.epochs * train_size / FLAGS.batch_size rdp = compute_rdp(q=sampling_probability, noise_multiplier=FLAGS.noise_multiplier, steps=steps, orders=orders) # Delta is set to approximate 1 / (number of training points). return get_privacy_spent(orders, rdp, target_delta=1e-5)[0] def build_model(x, y): del x, y model = tf.keras.Sequential([tf.keras.layers.Dense( 1, input_shape=(FLAGS.d,), use_bias=False, kernel_initializer=tf.keras.initializers.Zeros())]) return model def train_model(model, train_x, train_y): """Train the model on given data.""" optimizer = dp_optimizer_vectorized.VectorizedDPSGD( l2_norm_clip=FLAGS.l2_norm_clip, noise_multiplier=FLAGS.noise_multiplier, num_microbatches=FLAGS.microbatches, learning_rate=FLAGS.learning_rate) # gradient of (.5-x.w)^2 is 2(.5-x.w)x loss = tf.keras.losses.MeanSquaredError(reduction=tf.losses.Reduction.NONE) # Compile model with Keras model.compile(optimizer=optimizer, loss=loss, metrics=['mse']) # Train model with Keras model.fit(train_x, train_y, epochs=FLAGS.epochs, validation_data=(train_x, train_y), batch_size=FLAGS.batch_size, verbose=0) return model def membership_test(model, pois_x, pois_y): """Membership inference - detect poisoning.""" del pois_y return model.predict(pois_x) def gen_data(n, d): """Make binomial dataset.""" x = np.random.normal(size=(n, d)) y = np.ones(shape=(n,))/2. return x, y def train_and_score(dataset): """Complete training run with membership inference score.""" x, y, pois_x, pois_y, i = dataset np.random.seed(i) tf.set_random_seed(i) model = build_model(x, y) model = train_model(model, x, y) return membership_test(model, pois_x, pois_y) def main(unused_argv): del unused_argv # Load training and test data. np.random.seed(0) x, y = gen_data(1 + FLAGS.batch_size, FLAGS.d) auditor = audit.AuditAttack(x, y, train_and_score) # we will instrument the auditor to simply bkdr the last feature pois_x1, pois_x2 = x[:-1].copy(), x[:-1].copy() pois_x1[-1] = x[-1] pois_y = y[:-1] target_x = x[-1][None, :] assert np.unique(np.nonzero(pois_x1 - pois_x2)[0]).size == 1 pois_data = (pois_x1, pois_y), (pois_x2, pois_y), (target_x, y[-1]) poisoning = {} poisoning["data"] = (pois_data[0], pois_data[1]) poisoning["pois"] = pois_data[2] auditor.poisoning = poisoning thresh, _, _ = auditor.run(1, None, FLAGS.num_trials, alpha=FLAGS.alpha) _, eps, acc = auditor.run(1, None, FLAGS.num_trials, alpha=FLAGS.alpha, threshold=thresh) epsilon_upper_bound = compute_epsilon(FLAGS.batch_size) print("Analysis epsilon is {}.".format(epsilon_upper_bound)) print("At threshold={}, epsilon={}.".format(thresh, eps)) print("The best accuracy at distinguishing poisoning is {}.".format(acc)) if __name__ == '__main__': app.run(main)