import sys sys.path.append('..') import tensorflow as tf from privacy.bolton import losses from privacy.bolton import models """First, we will create a binary classification dataset with a single output dimension. The samples for each label are repeated data points at different points in space.""" # Parameters for dataset n_samples = 10 input_dim = 2 n_outputs = 1 # Create binary classification dataset: x_stack = [tf.constant(-1, tf.float32, (n_samples, input_dim)), tf.constant(1, tf.float32, (n_samples, input_dim))] y_stack = [tf.constant(0, tf.float32, (n_samples, 1)), tf.constant(1, tf.float32, (n_samples, 1))] x, y = tf.concat(x_stack, 0), tf.concat(y_stack, 0) print(x.shape, y.shape) generator = tf.data.Dataset.from_tensor_slices((x, y)) generator = generator.batch(10) generator = generator.shuffle(10) """First, we will explore using the pre - built BoltonModel, which is a thin wrapper around a Keras Model using a single - layer neural network. It automatically uses the Bolton Optimizer which encompasses all the logic required for the Bolton Differential Privacy method.""" bolt = models.BoltonModel(n_outputs) # tell the model how many outputs we have. """Now, we will pick our optimizer and Strongly Convex Loss function. The loss must extend from StrongConvexMixin and implement the associated methods.Some existing loss functions are pre - implemented in bolton.loss""" optimizer = tf.optimizers.SGD() reg_lambda = 1 C = 1 radius_constant = 1 loss = losses.StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant) """For simplicity, we pick all parameters of the StrongConvexBinaryCrossentropy to be 1; these are all tunable and their impact can be read in losses. StrongConvexBinaryCrossentropy.We then compile the model with the chosen optimizer and loss, which will automatically wrap the chosen optimizer with the Bolton Optimizer, ensuring the required components function as required for privacy guarantees.""" bolt.compile(optimizer, loss) """To fit the model, the optimizer will require additional information about the dataset and model.These parameters are: 1. the class_weights used 2. the number of samples in the dataset 3. the batch size which the model will try to infer, if possible. If not, you will be required to pass these explicitly to the fit method. As well, there are two privacy parameters than can be altered: 1. epsilon, a float 2. noise_distribution, a valid string indicating the distriution to use (must be implemented) The BoltonModel offers a helper method,.calculate_class_weight to aid in class_weight calculation.""" # required parameters class_weight = None # default, use .calculate_class_weight to specify other values batch_size = None # default, if it cannot be inferred, specify this n_samples = None # default, if it cannot be iferred, specify this # privacy parameters epsilon = 2 noise_distribution = 'laplace' bolt.fit(x, y, epsilon=epsilon, class_weight=class_weight, batch_size=batch_size, n_samples=n_samples, noise_distribution=noise_distribution, epochs=2) """We may also train a generator object, or try different optimizers and loss functions. Below, we will see that we must pass the number of samples as the fit method is unable to infer it for a generator.""" optimizer2 = tf.optimizers.Adam() bolt.compile(optimizer2, loss) # required parameters class_weight = None # default, use .calculate_class_weight to specify other values batch_size = None # default, if it cannot be inferred, specify this n_samples = None # default, if it cannot be iferred, specify this # privacy parameters epsilon = 2 noise_distribution = 'laplace' try: bolt.fit(generator, epsilon=epsilon, class_weight=class_weight, batch_size=batch_size, n_samples=n_samples, noise_distribution=noise_distribution, verbose=0 ) except ValueError as e: print(e) """And now, re running with the parameter set.""" n_samples = 20 bolt.fit(generator, epsilon=epsilon, class_weight=class_weight, batch_size=batch_size, n_samples=n_samples, noise_distribution=noise_distribution, verbose=0 ) """You don't have to use the bolton model to use the Bolton method. There are only a few requirements: 1. make sure any requirements from the loss are implemented in the model. 2. instantiate the optimizer and use it as a context around your fit operation. """ from privacy.bolton.optimizers import Bolton """Here, we create our own model and setup the Bolton optimizer.""" class TestModel(tf.keras.Model): def __init__(self, reg_layer, n_outputs=1): super(TestModel, self).__init__(name='test') self.output_layer = tf.keras.layers.Dense(n_outputs, kernel_regularizer=reg_layer ) def call(self, inputs): return self.output_layer(inputs) optimizer = tf.optimizers.SGD() loss = losses.StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant) optimizer = Bolton(optimizer, loss) """Now, we instantiate our model and check for 1. Since our loss requires L2 regularization over the kernel, we will pass it to the model.""" n_outputs = 1 # parameter for model and optimizer context. test_model = TestModel(loss.kernel_regularizer(), n_outputs) test_model.compile(optimizer, loss) """We comply with 2., and use the Bolton Optimizer as a context around the fit method.""" # parameters for context noise_distribution = 'laplace' epsilon = 2 class_weights = 1 # Previously, the fit method auto-detected the class_weights. # Here, we need to pass the class_weights explicitly. 1 is the equivalent of None. n_samples = 20 batch_size = 5 with optimizer( noise_distribution=noise_distribution, epsilon=epsilon, layers=test_model.layers, class_weights=class_weights, n_samples=n_samples, batch_size=batch_size ) as _: test_model.fit(x, y, batch_size=batch_size, epochs=2)