# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Run auditing on the FashionMNIST dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v1 as tf from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent from tensorflow_privacy.privacy.optimizers import dp_optimizer_vectorized from absl import app from absl import flags import audit #### FLAGS FLAGS = flags.FLAGS flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training') flags.DEFINE_float('noise_multiplier', 1.1, 'Ratio of the standard deviation to the clipping norm') flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm') flags.DEFINE_integer('batch_size', 250, 'Batch size') flags.DEFINE_integer('epochs', 24, 'Number of epochs') flags.DEFINE_integer( 'microbatches', 250, 'Number of microbatches ' '(must evenly divide batch_size)') flags.DEFINE_string('model', 'lr', 'model to use, pick between lr and nn') flags.DEFINE_string('attack_type', "clip_aware", 'clip_aware or backdoor') flags.DEFINE_integer('pois_ct', 1, 'Number of poisoning points') flags.DEFINE_integer('num_trials', 100, 'Number of trials for auditing') flags.DEFINE_float('attack_l2_norm', 10, 'Size of poisoning data') flags.DEFINE_float('alpha', 0.05, '1-confidence') flags.DEFINE_boolean('load_weights', False, 'if True, use weights saved in init_weights.h5') FLAGS = flags.FLAGS def compute_epsilon(train_size): """Computes epsilon value for given hyperparameters.""" if FLAGS.noise_multiplier == 0.0: return float('inf') orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) sampling_probability = FLAGS.batch_size / train_size steps = FLAGS.epochs * train_size / FLAGS.batch_size rdp = compute_rdp(q=sampling_probability, noise_multiplier=FLAGS.noise_multiplier, steps=steps, orders=orders) # Delta is set to approximate 1 / (number of training points). return get_privacy_spent(orders, rdp, target_delta=1e-5)[0] def build_model(x, y): """Build a keras model.""" input_shape = x.shape[1:] num_classes = y.shape[1] l2 = 0 if FLAGS.model == 'lr': model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=input_shape), tf.keras.layers.Dense(num_classes, kernel_initializer='glorot_normal', kernel_regularizer=tf.keras.regularizers.l2(l2)) ]) elif FLAGS.model == 'nn': model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=input_shape), tf.keras.layers.Dense(32, activation='relu', kernel_initializer='glorot_normal', kernel_regularizer=tf.keras.regularizers.l2(l2)), tf.keras.layers.Dense(num_classes, kernel_initializer='glorot_normal', kernel_regularizer=tf.keras.regularizers.l2(l2)) ]) else: raise NotImplementedError return model def train_model(model, train_x, train_y, save_weights=False): """Train the model on given data.""" optimizer = dp_optimizer_vectorized.VectorizedDPSGD( l2_norm_clip=FLAGS.l2_norm_clip, noise_multiplier=FLAGS.noise_multiplier, num_microbatches=FLAGS.microbatches, learning_rate=FLAGS.learning_rate) loss = tf.keras.losses.CategoricalCrossentropy( from_logits=True, reduction=tf.losses.Reduction.NONE) # Compile model with Keras model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy']) if save_weights: wts = model.get_weights() np.save('save_model', wts) model.set_weights(wts) return model if FLAGS.load_weights: # load preset weights wts = np.load('save_model.npy', allow_pickle=True).tolist() model.set_weights(wts) # Train model with Keras model.fit(train_x, train_y, epochs=FLAGS.epochs, validation_data=(train_x, train_y), batch_size=FLAGS.batch_size, verbose=0) return model def membership_test(model, pois_x, pois_y): """Membership inference - detect poisoning.""" probs = model.predict(np.concatenate([pois_x, np.zeros_like(pois_x)])) return np.multiply(probs[0, :] - probs[1, :], pois_y).sum() def train_and_score(dataset): """Complete training run with membership inference score.""" x, y, pois_x, pois_y, i = dataset np.random.seed(i) tf.set_random_seed(i) tf.reset_default_graph() model = build_model(x, y) model = train_model(model, x, y) return membership_test(model, pois_x, pois_y) def main(unused_argv): del unused_argv # Load training and test data. np.random.seed(0) (trn_x, trn_y), _ = tf.keras.datasets.fashion_mnist.load_data() trn_inds = np.where(trn_y < 2)[0] trn_x = -.5 + trn_x[trn_inds] / 255. trn_y = np.eye(2)[trn_y[trn_inds]] # subsample dataset ss_inds = np.random.choice(trn_x.shape[0], trn_x.shape[0]//2, replace=False) trn_x = trn_x[ss_inds] trn_y = trn_y[ss_inds] init_model = build_model(trn_x, trn_y) _ = train_model(init_model, trn_x, trn_y, save_weights=True) auditor = audit.AuditAttack(trn_x, trn_y, train_and_score) thresh, _, _ = auditor.run(FLAGS.pois_ct, FLAGS.attack_type, FLAGS.num_trials, alpha=FLAGS.alpha, threshold=None, l2_norm=FLAGS.attack_l2_norm) _, eps, acc = auditor.run(FLAGS.pois_ct, FLAGS.attack_type, FLAGS.num_trials, alpha=FLAGS.alpha, threshold=thresh, l2_norm=FLAGS.attack_l2_norm) epsilon_ub = compute_epsilon(trn_x.shape[0]) print("Analysis epsilon is {}.".format(epsilon_ub)) print("At threshold={}, epsilon={}.".format(thresh, eps)) print("The best accuracy at distinguishing poisoning is {}.".format(acc)) if __name__ == '__main__': app.run(main)