forked from 626_privacy/tensorflow_privacy
5493a3baf0
accessing it via tf.estimator and depend on the tensorflow estimator target. PiperOrigin-RevId: 438419860
177 lines
7 KiB
Python
177 lines
7 KiB
Python
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# =============================================================================
|
|
"""Training a one-layer NN on Adult data with differentially private SGD optimizer."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from absl import app
|
|
from absl import flags
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
from sklearn.model_selection import KFold
|
|
import tensorflow as tf
|
|
|
|
from tensorflow import estimator as tf_estimator
|
|
from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator
|
|
from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_eps_poisson
|
|
from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_mu_poisson
|
|
from tensorflow_privacy.privacy.optimizers import dp_optimizer
|
|
|
|
#### FLAGS
|
|
FLAGS = flags.FLAGS
|
|
flags.DEFINE_boolean(
|
|
'dpsgd', True, 'If True, train with DP-SGD.'
|
|
'If False, train with vanilla SGD.')
|
|
flags.DEFINE_float('learning_rate', .15, 'Learning rate for training')
|
|
flags.DEFINE_float('noise_multiplier', 0.55,
|
|
'Ratio of the standard deviation to the clipping norm')
|
|
flags.DEFINE_float('l2_norm_clip', 1, 'Clipping norm')
|
|
flags.DEFINE_integer('epochs', 20, 'Number of epochs')
|
|
flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
|
|
flags.DEFINE_string('model_dir', None, 'Model directory')
|
|
|
|
sampling_batch = 256
|
|
microbatches = 256
|
|
num_examples = 29305
|
|
|
|
|
|
def nn_model_fn(features, labels, mode):
|
|
"""Define CNN architecture using tf.keras.layers."""
|
|
input_layer = tf.reshape(features['x'], [-1, 123])
|
|
y = tf.keras.layers.Dense(16, activation='relu').apply(input_layer)
|
|
logits = tf.keras.layers.Dense(2).apply(y)
|
|
|
|
# Calculate loss as a vector (to support microbatches in DP-SGD).
|
|
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
|
labels=labels, logits=logits)
|
|
# Define mean of loss across minibatch (for reporting through tf.Estimator).
|
|
scalar_loss = tf.reduce_mean(vector_loss)
|
|
|
|
# Configure the training op (for TRAIN mode).
|
|
if mode == tf_estimator.ModeKeys.TRAIN:
|
|
if FLAGS.dpsgd:
|
|
# Use DP version of GradientDescentOptimizer. Other optimizers are
|
|
# available in dp_optimizer. Most optimizers inheriting from
|
|
# tf.train.Optimizer should be wrappable in differentially private
|
|
# counterparts by calling dp_optimizer.optimizer_from_args().
|
|
optimizer = dp_optimizer.DPGradientDescentGaussianOptimizer(
|
|
l2_norm_clip=FLAGS.l2_norm_clip,
|
|
noise_multiplier=FLAGS.noise_multiplier,
|
|
num_microbatches=microbatches,
|
|
learning_rate=FLAGS.learning_rate)
|
|
opt_loss = vector_loss
|
|
else:
|
|
optimizer = tf.compat.v1.train.GradientDescentOptimizer(
|
|
learning_rate=FLAGS.learning_rate)
|
|
opt_loss = scalar_loss
|
|
global_step = tf.compat.v1.train.get_global_step()
|
|
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
|
|
# In the following, we pass the mean of the loss (scalar_loss) rather than
|
|
# the vector_loss because tf.estimator requires a scalar loss. This is only
|
|
# used for evaluation and debugging by tf.estimator. The actual loss being
|
|
# minimized is opt_loss defined above and passed to optimizer.minimize().
|
|
return tf_estimator.EstimatorSpec(
|
|
mode=mode, loss=scalar_loss, train_op=train_op)
|
|
|
|
# Add evaluation metrics (for EVAL mode).
|
|
if mode == tf_estimator.ModeKeys.EVAL:
|
|
eval_metric_ops = {
|
|
'accuracy':
|
|
tf.compat.v1.metrics.accuracy(
|
|
labels=labels, predictions=tf.argmax(input=logits, axis=1))
|
|
}
|
|
return tf_estimator.EstimatorSpec(
|
|
mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
|
|
|
|
return None
|
|
|
|
|
|
def load_adult():
|
|
"""Loads ADULT a2a as in LIBSVM and preprocesses to combine training and validation data."""
|
|
# https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
|
|
|
|
x = pd.read_csv('adult.csv')
|
|
kf = KFold(n_splits=10)
|
|
for train_index, test_index in kf.split(x):
|
|
train, test = x.iloc[train_index, :], x.iloc[test_index, :]
|
|
train_data = train.iloc[:, range(x.shape[1] - 1)].values.astype('float32')
|
|
test_data = test.iloc[:, range(x.shape[1] - 1)].values.astype('float32')
|
|
|
|
train_labels = (train.iloc[:, x.shape[1] - 1] == 1).astype('int32').values
|
|
test_labels = (test.iloc[:, x.shape[1] - 1] == 1).astype('int32').values
|
|
|
|
return train_data, train_labels, test_data, test_labels
|
|
|
|
|
|
def main(unused_argv):
|
|
tf.compat.v1.logging.set_verbosity(0)
|
|
|
|
# Load training and test data.
|
|
train_data, train_labels, test_data, test_labels = load_adult()
|
|
|
|
# Instantiate the tf.Estimator.
|
|
adult_classifier = tf_compat_v1_estimator.Estimator(
|
|
model_fn=nn_model_fn, model_dir=FLAGS.model_dir)
|
|
|
|
# Create tf.Estimator input functions for the training and test data.
|
|
eval_input_fn = tf_compat_v1_estimator.inputs.numpy_input_fn(
|
|
x={'x': test_data}, y=test_labels, num_epochs=1, shuffle=False)
|
|
|
|
# Training loop.
|
|
steps_per_epoch = num_examples // sampling_batch
|
|
test_accuracy_list = []
|
|
for epoch in range(1, FLAGS.epochs + 1):
|
|
for _ in range(steps_per_epoch):
|
|
whether = np.random.random_sample(num_examples) > (
|
|
1 - sampling_batch / num_examples)
|
|
subsampling = [i for i in np.arange(num_examples) if whether[i]]
|
|
global microbatches
|
|
microbatches = len(subsampling)
|
|
|
|
train_input_fn = tf_compat_v1_estimator.inputs.numpy_input_fn(
|
|
x={'x': train_data[subsampling]},
|
|
y=train_labels[subsampling],
|
|
batch_size=len(subsampling),
|
|
num_epochs=1,
|
|
shuffle=True)
|
|
# Train the model for one step.
|
|
adult_classifier.train(input_fn=train_input_fn, steps=1)
|
|
|
|
# Evaluate the model and print results
|
|
eval_results = adult_classifier.evaluate(input_fn=eval_input_fn)
|
|
test_accuracy = eval_results['accuracy']
|
|
test_accuracy_list.append(test_accuracy)
|
|
print('Test accuracy after %d epochs is: %.3f' % (epoch, test_accuracy))
|
|
|
|
# Compute the privacy budget expended so far.
|
|
if FLAGS.dpsgd:
|
|
eps = compute_eps_poisson(epoch, FLAGS.noise_multiplier, num_examples,
|
|
sampling_batch, 1e-5)
|
|
mu = compute_mu_poisson(epoch, FLAGS.noise_multiplier, num_examples,
|
|
sampling_batch)
|
|
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
|
|
print('For delta=1e-5, the current mu is: %.2f' % mu)
|
|
|
|
if mu > FLAGS.max_mu:
|
|
break
|
|
else:
|
|
print('Trained with vanilla non-private SGD optimizer')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
app.run(main)
|