tensorflow_privacy/research/GDP_2019/imdb_tutorial.py
Fabien Hertschuh 5493a3baf0 Explicitly import estimator from tensorflow as a separate import instead of
accessing it via tf.estimator and depend on the tensorflow estimator target.

PiperOrigin-RevId: 438419860
2022-03-30 16:05:01 -07:00

177 lines
6.9 KiB
Python

# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""Training a deep NN on IMDB reviews with differentially private Adam optimizer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
from keras.preprocessing import sequence
import numpy as np
import tensorflow as tf
from tensorflow import estimator as tf_estimator
from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator
from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_eps_poisson
from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_mu_poisson
from tensorflow_privacy.privacy.optimizers import dp_optimizer
#### FLAGS
FLAGS = flags.FLAGS
flags.DEFINE_boolean(
'dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
flags.DEFINE_float('learning_rate', 0.02, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 0.56,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 1, 'Clipping norm')
flags.DEFINE_integer('epochs', 25, 'Number of epochs')
flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
flags.DEFINE_string('model_dir', None, 'Model directory')
sampling_batch = 512
microbatches = 512
max_features = 10000
maxlen = 256
num_examples = 25000
def nn_model_fn(features, labels, mode):
"""Define NN architecture using tf.keras.layers."""
input_layer = tf.reshape(features['x'], [-1, maxlen])
y = tf.keras.layers.Embedding(max_features, 16).apply(input_layer)
y = tf.keras.layers.GlobalAveragePooling1D().apply(y)
y = tf.keras.layers.Dense(16, activation='relu').apply(y)
logits = tf.keras.layers.Dense(2).apply(y)
# Calculate loss as a vector (to support microbatches in DP-SGD).
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits)
# Define mean of loss across minibatch (for reporting through tf.Estimator).
scalar_loss = tf.reduce_mean(vector_loss)
# Configure the training op (for TRAIN mode).
if mode == tf_estimator.ModeKeys.TRAIN:
if FLAGS.dpsgd:
# Use DP version of GradientDescentOptimizer. Other optimizers are
# available in dp_optimizer. Most optimizers inheriting from
# tf.train.Optimizer should be wrappable in differentially private
# counterparts by calling dp_optimizer.optimizer_from_args().
optimizer = dp_optimizer.DPAdamGaussianOptimizer(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=microbatches,
learning_rate=FLAGS.learning_rate)
opt_loss = vector_loss
else:
optimizer = tf.compat.v1.train.AdamOptimizer(
learning_rate=FLAGS.learning_rate)
opt_loss = scalar_loss
global_step = tf.compat.v1.train.get_global_step()
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
# In the following, we pass the mean of the loss (scalar_loss) rather than
# the vector_loss because tf.estimator requires a scalar loss. This is only
# used for evaluation and debugging by tf.estimator. The actual loss being
# minimized is opt_loss defined above and passed to optimizer.minimize().
return tf_estimator.EstimatorSpec(
mode=mode, loss=scalar_loss, train_op=train_op)
# Add evaluation metrics (for EVAL mode).
if mode == tf_estimator.ModeKeys.EVAL:
eval_metric_ops = {
'accuracy':
tf.compat.v1.metrics.accuracy(
labels=labels, predictions=tf.argmax(input=logits, axis=1))
}
return tf_estimator.EstimatorSpec(
mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
return None
def load_imdb():
"""Load IMDB movie reviews data."""
(train_data, train_labels), (test_data,
test_labels) = tf.keras.datasets.imdb.load_data(
num_words=max_features)
train_data = sequence.pad_sequences(
train_data, maxlen=maxlen).astype('float32')
test_data = sequence.pad_sequences(test_data, maxlen=maxlen).astype('float32')
return train_data, train_labels, test_data, test_labels
def main(unused_argv):
tf.compat.v1.logging.set_verbosity(3)
# Load training and test data.
train_data, train_labels, test_data, test_labels = load_imdb()
# Instantiate the tf.Estimator.
imdb_classifier = tf_estimator.Estimator(
model_fn=nn_model_fn, model_dir=FLAGS.model_dir)
# Create tf.Estimator input functions for the training and test data.
eval_input_fn = tf_compat_v1_estimator.inputs.numpy_input_fn(
x={'x': test_data}, y=test_labels, num_epochs=1, shuffle=False)
# Training loop.
steps_per_epoch = num_examples // sampling_batch
test_accuracy_list = []
for epoch in range(1, FLAGS.epochs + 1):
for _ in range(steps_per_epoch):
whether = np.random.random_sample(num_examples) > (
1 - sampling_batch / num_examples)
subsampling = [i for i in np.arange(num_examples) if whether[i]]
global microbatches
microbatches = len(subsampling)
train_input_fn = tf_compat_v1_estimator.inputs.numpy_input_fn(
x={'x': train_data[subsampling]},
y=train_labels[subsampling],
batch_size=len(subsampling),
num_epochs=1,
shuffle=False)
# Train the model for one step.
imdb_classifier.train(input_fn=train_input_fn, steps=1)
# Evaluate the model and print results
eval_results = imdb_classifier.evaluate(input_fn=eval_input_fn)
test_accuracy = eval_results['accuracy']
test_accuracy_list.append(test_accuracy)
print('Test accuracy after %d epochs is: %.3f' % (epoch, test_accuracy))
# Compute the privacy budget expended so far.
if FLAGS.dpsgd:
eps = compute_eps_poisson(epoch, FLAGS.noise_multiplier, num_examples,
sampling_batch, 1e-5)
mu = compute_mu_poisson(epoch, FLAGS.noise_multiplier, num_examples,
sampling_batch)
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
print('For delta=1e-5, the current mu is: %.2f' % mu)
if mu > FLAGS.max_mu:
break
else:
print('Trained with vanilla non-private SGD optimizer')
if __name__ == '__main__':
app.run(main)