forked from 626_privacy/tensorflow_privacy
44dc40454b
PiperOrigin-RevId: 463145196
134 lines
5.3 KiB
Python
134 lines
5.3 KiB
Python
# Copyright 2020, The TensorFlow Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Train a CNN on MNIST with differentially private SGD optimizer."""
|
|
|
|
import time
|
|
|
|
from absl import app
|
|
from absl import flags
|
|
from absl import logging
|
|
import tensorflow as tf
|
|
from tensorflow import estimator as tf_estimator
|
|
from tensorflow_privacy.privacy.analysis import compute_dp_sgd_privacy_lib
|
|
from tensorflow_privacy.privacy.optimizers import dp_optimizer
|
|
import mnist_dpsgd_tutorial_common as common
|
|
|
|
flags.DEFINE_boolean(
|
|
'dpsgd', True, 'If True, train with DP-SGD. If False, '
|
|
'train with vanilla SGD.')
|
|
flags.DEFINE_float('learning_rate', .15, 'Learning rate for training')
|
|
flags.DEFINE_float('noise_multiplier', 1.1,
|
|
'Ratio of the standard deviation to the clipping norm')
|
|
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
|
|
flags.DEFINE_integer('batch_size', 256, 'Batch size')
|
|
flags.DEFINE_integer('epochs', 30, 'Number of epochs')
|
|
flags.DEFINE_integer(
|
|
'microbatches', 256, 'Number of microbatches '
|
|
'(must evenly divide batch_size)')
|
|
flags.DEFINE_string('model_dir', None, 'Model directory')
|
|
|
|
FLAGS = flags.FLAGS
|
|
|
|
|
|
def cnn_model_fn(features, labels, mode, params): # pylint: disable=unused-argument
|
|
"""Model function for a CNN."""
|
|
|
|
# Define CNN architecture.
|
|
logits = common.get_cnn_model(features)
|
|
|
|
# Calculate loss as a vector (to support microbatches in DP-SGD).
|
|
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
|
labels=labels, logits=logits)
|
|
# Define mean of loss across minibatch (for reporting through tf.Estimator).
|
|
scalar_loss = tf.reduce_mean(input_tensor=vector_loss)
|
|
|
|
# Configure the training op (for TRAIN mode).
|
|
if mode == tf_estimator.ModeKeys.TRAIN:
|
|
if FLAGS.dpsgd:
|
|
# Use DP version of GradientDescentOptimizer. Other optimizers are
|
|
# available in dp_optimizer. Most optimizers inheriting from
|
|
# tf.compat.v1.train.Optimizer should be wrappable in differentially
|
|
# private counterparts by calling dp_optimizer.optimizer_from_args().
|
|
optimizer = dp_optimizer.DPGradientDescentGaussianOptimizer(
|
|
l2_norm_clip=FLAGS.l2_norm_clip,
|
|
noise_multiplier=FLAGS.noise_multiplier,
|
|
num_microbatches=FLAGS.microbatches,
|
|
learning_rate=FLAGS.learning_rate)
|
|
opt_loss = vector_loss
|
|
else:
|
|
optimizer = tf.compat.v1.train.GradientDescentOptimizer(
|
|
learning_rate=FLAGS.learning_rate)
|
|
opt_loss = scalar_loss
|
|
|
|
global_step = tf.compat.v1.train.get_global_step()
|
|
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
|
|
|
|
# In the following, we pass the mean of the loss (scalar_loss) rather than
|
|
# the vector_loss because tf.estimator requires a scalar loss. This is only
|
|
# used for evaluation and debugging by tf.estimator. The actual loss being
|
|
# minimized is opt_loss defined above and passed to optimizer.minimize().
|
|
return tf_estimator.EstimatorSpec(
|
|
mode=mode, loss=scalar_loss, train_op=train_op)
|
|
|
|
# Add evaluation metrics (for EVAL mode).
|
|
elif mode == tf_estimator.ModeKeys.EVAL:
|
|
eval_metric_ops = {
|
|
'accuracy':
|
|
tf.compat.v1.metrics.accuracy(
|
|
labels=labels, predictions=tf.argmax(input=logits, axis=1))
|
|
}
|
|
return tf_estimator.EstimatorSpec(
|
|
mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
|
|
|
|
|
|
def main(unused_argv):
|
|
logging.set_verbosity(logging.INFO)
|
|
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
|
|
raise ValueError('Number of microbatches should divide evenly batch_size')
|
|
|
|
# Instantiate the tf.Estimator.
|
|
mnist_classifier = tf_estimator.Estimator(
|
|
model_fn=cnn_model_fn, model_dir=FLAGS.model_dir)
|
|
|
|
# Training loop.
|
|
steps_per_epoch = 60000 // FLAGS.batch_size
|
|
for epoch in range(1, FLAGS.epochs + 1):
|
|
start_time = time.time()
|
|
# Train the model for one epoch.
|
|
mnist_classifier.train(
|
|
input_fn=common.make_input_fn('train', FLAGS.batch_size),
|
|
steps=steps_per_epoch)
|
|
end_time = time.time()
|
|
logging.info('Epoch %d time in seconds: %.2f', epoch, end_time - start_time)
|
|
|
|
# Evaluate the model and print results
|
|
eval_results = mnist_classifier.evaluate(
|
|
input_fn=common.make_input_fn('test', FLAGS.batch_size, 1))
|
|
test_accuracy = eval_results['accuracy']
|
|
print('Test accuracy after %d epochs is: %.3f' % (epoch, test_accuracy))
|
|
|
|
# Compute the privacy budget expended.
|
|
if FLAGS.dpsgd:
|
|
if FLAGS.noise_multiplier > 0.0:
|
|
eps, _ = compute_dp_sgd_privacy_lib.compute_dp_sgd_privacy(
|
|
60000, FLAGS.batch_size, FLAGS.noise_multiplier, epoch, 1e-5)
|
|
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
|
|
else:
|
|
print('Trained with DP-SGD but with zero noise.')
|
|
else:
|
|
print('Trained with vanilla non-private SGD optimizer')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
app.run(main)
|