forked from 626_privacy/tensorflow_privacy
e826ec717a
Also use the strip_prefix option to only pull in the accounting WORKSPACE, not the top-level Google DP project WORKSPACE. This allows us to align the import statements to work both when pulling in the `dp_acounting` dependency via Bazel and pip. PiperOrigin-RevId: 459807060
146 lines
5 KiB
Python
146 lines
5 KiB
Python
# Copyright 2019, The TensorFlow Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Training a CNN on MNIST with Keras and the DP SGD optimizer."""
|
|
|
|
from absl import app
|
|
from absl import flags
|
|
from absl import logging
|
|
import dp_accounting
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer
|
|
|
|
|
|
flags.DEFINE_boolean(
|
|
'dpsgd', True, 'If True, train with DP-SGD. If False, '
|
|
'train with vanilla SGD.')
|
|
flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
|
|
flags.DEFINE_float('noise_multiplier', 0.1,
|
|
'Ratio of the standard deviation to the clipping norm')
|
|
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
|
|
flags.DEFINE_integer('batch_size', 250, 'Batch size')
|
|
flags.DEFINE_integer('epochs', 60, 'Number of epochs')
|
|
flags.DEFINE_integer(
|
|
'microbatches', 250, 'Number of microbatches '
|
|
'(must evenly divide batch_size)')
|
|
flags.DEFINE_string('model_dir', None, 'Model directory')
|
|
|
|
FLAGS = flags.FLAGS
|
|
|
|
|
|
def compute_epsilon(steps):
|
|
"""Computes epsilon value for given hyperparameters."""
|
|
if FLAGS.noise_multiplier == 0.0:
|
|
return float('inf')
|
|
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
|
accountant = dp_accounting.rdp.RdpAccountant(orders)
|
|
|
|
sampling_probability = FLAGS.batch_size / 60000
|
|
event = dp_accounting.SelfComposedDpEvent(
|
|
dp_accounting.PoissonSampledDpEvent(
|
|
sampling_probability,
|
|
dp_accounting.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
|
|
|
|
accountant.compose(event)
|
|
|
|
# Delta is set to 1e-5 because MNIST has 60000 training points.
|
|
return accountant.get_epsilon(target_delta=1e-5)
|
|
|
|
|
|
def load_mnist():
|
|
"""Loads MNIST and preprocesses to combine training and validation data."""
|
|
train, test = tf.keras.datasets.mnist.load_data()
|
|
train_data, train_labels = train
|
|
test_data, test_labels = test
|
|
|
|
train_data = np.array(train_data, dtype=np.float32) / 255
|
|
test_data = np.array(test_data, dtype=np.float32) / 255
|
|
|
|
train_data = train_data.reshape((train_data.shape[0], 28, 28, 1))
|
|
test_data = test_data.reshape((test_data.shape[0], 28, 28, 1))
|
|
|
|
train_labels = np.array(train_labels, dtype=np.int32)
|
|
test_labels = np.array(test_labels, dtype=np.int32)
|
|
|
|
train_labels = tf.keras.utils.to_categorical(train_labels, num_classes=10)
|
|
test_labels = tf.keras.utils.to_categorical(test_labels, num_classes=10)
|
|
|
|
assert train_data.min() == 0.
|
|
assert train_data.max() == 1.
|
|
assert test_data.min() == 0.
|
|
assert test_data.max() == 1.
|
|
|
|
return train_data, train_labels, test_data, test_labels
|
|
|
|
|
|
def main(unused_argv):
|
|
logging.set_verbosity(logging.INFO)
|
|
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
|
|
raise ValueError('Number of microbatches should divide evenly batch_size')
|
|
|
|
# Load training and test data.
|
|
train_data, train_labels, test_data, test_labels = load_mnist()
|
|
|
|
# Define a sequential Keras model
|
|
model = tf.keras.Sequential([
|
|
tf.keras.layers.Conv2D(
|
|
16,
|
|
8,
|
|
strides=2,
|
|
padding='same',
|
|
activation='relu',
|
|
input_shape=(28, 28, 1)),
|
|
tf.keras.layers.MaxPool2D(2, 1),
|
|
tf.keras.layers.Conv2D(
|
|
32, 4, strides=2, padding='valid', activation='relu'),
|
|
tf.keras.layers.MaxPool2D(2, 1),
|
|
tf.keras.layers.Flatten(),
|
|
tf.keras.layers.Dense(32, activation='relu'),
|
|
tf.keras.layers.Dense(10)
|
|
])
|
|
|
|
if FLAGS.dpsgd:
|
|
optimizer = DPKerasSGDOptimizer(
|
|
l2_norm_clip=FLAGS.l2_norm_clip,
|
|
noise_multiplier=FLAGS.noise_multiplier,
|
|
num_microbatches=FLAGS.microbatches,
|
|
learning_rate=FLAGS.learning_rate)
|
|
# Compute vector of per-example loss rather than its mean over a minibatch.
|
|
loss = tf.keras.losses.CategoricalCrossentropy(
|
|
from_logits=True, reduction=tf.losses.Reduction.NONE)
|
|
else:
|
|
optimizer = tf.keras.optimizers.SGD(learning_rate=FLAGS.learning_rate)
|
|
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
|
|
|
|
# Compile model with Keras
|
|
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
|
|
|
|
# Train model with Keras
|
|
model.fit(
|
|
train_data,
|
|
train_labels,
|
|
epochs=FLAGS.epochs,
|
|
validation_data=(test_data, test_labels),
|
|
batch_size=FLAGS.batch_size)
|
|
|
|
# Compute the privacy budget expended.
|
|
if FLAGS.dpsgd:
|
|
eps = compute_epsilon(FLAGS.epochs * 60000 // FLAGS.batch_size)
|
|
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
|
|
else:
|
|
print('Trained with vanilla non-private SGD optimizer')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
app.run(main)
|