tensorflow_privacy/tutorials/mnist_dpsgd_tutorial_eager.py
Galen Andrew d5dcfec745 Remove set_denominator functions from DPQuery and make QueryWithLedger easier to use.
set_denominator was added so that the batch size doesn't need to be specified before constructing the optimizer, but it breaks the DPQuery abstraction. Now the optimizer uses a GaussianSumQuery instead of GaussianAverageQuery, and normalization by batch size is done inside the optimizer.

Also instead of creating all DPQueries with a PrivacyLedger and then wrapping with QueryWithLedger, it is now sufficient to create the queries with no ledger and QueryWithLedger will construct the ledger and pass it to all inner queries.

PiperOrigin-RevId: 251462353
2019-06-04 10:14:32 -07:00

153 lines
6 KiB
Python

# Copyright 2019, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Training a CNN on MNIST in TF Eager mode with DP-SGD optimizer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
from distutils.version import LooseVersion
import numpy as np
import tensorflow as tf
from privacy.analysis.rdp_accountant import compute_rdp
from privacy.analysis.rdp_accountant import get_privacy_spent
from privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
tf.enable_eager_execution()
else:
GradientDescentOptimizer = tf.optimizers.SGD # pylint: disable=invalid-name
flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 1.1,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
flags.DEFINE_integer('batch_size', 250, 'Batch size')
flags.DEFINE_integer('epochs', 60, 'Number of epochs')
flags.DEFINE_integer('microbatches', 250, 'Number of microbatches '
'(must evenly divide batch_size)')
FLAGS = flags.FLAGS
def compute_epsilon(steps):
"""Computes epsilon value for given hyperparameters."""
if FLAGS.noise_multiplier == 0.0:
return float('inf')
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
sampling_probability = FLAGS.batch_size / 60000
rdp = compute_rdp(q=sampling_probability,
noise_multiplier=FLAGS.noise_multiplier,
steps=steps,
orders=orders)
# Delta is set to 1e-5 because MNIST has 60000 training points.
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
def main(_):
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
raise ValueError('Number of microbatches should divide evenly batch_size')
# Fetch the mnist data
train, test = tf.keras.datasets.mnist.load_data()
train_images, train_labels = train
test_images, test_labels = test
# Create a dataset object and batch for the training data
dataset = tf.data.Dataset.from_tensor_slices(
(tf.cast(train_images[..., tf.newaxis]/255, tf.float32),
tf.cast(train_labels, tf.int64)))
dataset = dataset.shuffle(1000).batch(FLAGS.batch_size)
# Create a dataset object and batch for the test data
eval_dataset = tf.data.Dataset.from_tensor_slices(
(tf.cast(test_images[..., tf.newaxis]/255, tf.float32),
tf.cast(test_labels, tf.int64)))
eval_dataset = eval_dataset.batch(10000)
# Define the model using tf.keras.layers
mnist_model = tf.keras.Sequential([
tf.keras.layers.Conv2D(16, 8,
strides=2,
padding='same',
activation='relu'),
tf.keras.layers.MaxPool2D(2, 1),
tf.keras.layers.Conv2D(32, 4, strides=2, activation='relu'),
tf.keras.layers.MaxPool2D(2, 1),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(10)
])
# Instantiate the optimizer
if FLAGS.dpsgd:
opt = DPGradientDescentGaussianOptimizer(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=FLAGS.microbatches,
learning_rate=FLAGS.learning_rate)
else:
opt = GradientDescentOptimizer(learning_rate=FLAGS.learning_rate)
# Training loop.
steps_per_epoch = 60000 // FLAGS.batch_size
for epoch in range(FLAGS.epochs):
# Train the model for one epoch.
for (_, (images, labels)) in enumerate(dataset.take(-1)):
with tf.GradientTape(persistent=True) as gradient_tape:
# This dummy call is needed to obtain the var list.
logits = mnist_model(images, training=True)
var_list = mnist_model.trainable_variables
# In Eager mode, the optimizer takes a function that returns the loss.
def loss_fn():
logits = mnist_model(images, training=True) # pylint: disable=undefined-loop-variable,cell-var-from-loop
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits) # pylint: disable=undefined-loop-variable,cell-var-from-loop
# If training without privacy, the loss is a scalar not a vector.
if not FLAGS.dpsgd:
loss = tf.reduce_mean(loss)
return loss
if FLAGS.dpsgd:
grads_and_vars = opt.compute_gradients(loss_fn, var_list,
gradient_tape=gradient_tape)
else:
grads_and_vars = opt.compute_gradients(loss_fn, var_list)
opt.apply_gradients(grads_and_vars)
# Evaluate the model and print results
for (_, (images, labels)) in enumerate(eval_dataset.take(-1)):
logits = mnist_model(images, training=False)
correct_preds = tf.equal(tf.argmax(logits, axis=1), labels)
test_accuracy = np.mean(correct_preds.numpy())
print('Test accuracy after epoch %d is: %.3f' % (epoch, test_accuracy))
# Compute the privacy budget expended so far.
if FLAGS.dpsgd:
eps = compute_epsilon((epoch + 1) * steps_per_epoch)
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
else:
print('Trained with vanilla non-private SGD optimizer')
if __name__ == '__main__':
app.run(main)