tensorflow_privacy/privacy/analysis/tensor_buffer_test_graph.py
Steve Chien 28639ba0a8 Allow tensor buffers to automatically resize as needed.
PiperOrigin-RevId: 246594454
2019-05-03 16:30:02 -07:00

72 lines
2.6 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for tensor_buffer in graph mode."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from privacy.analysis import tensor_buffer
class TensorBufferTest(tf.test.TestCase):
"""Tests for TensorBuffer in graph mode."""
def test_noresize(self):
"""Test buffer does not resize if capacity is not exceeded."""
with self.cached_session() as sess:
size, shape = 2, [2, 3]
my_buffer = tensor_buffer.TensorBuffer(size, shape, name='my_buffer')
value1 = [[1, 2, 3], [4, 5, 6]]
with tf.control_dependencies([my_buffer.append(value1)]):
value2 = [[7, 8, 9], [10, 11, 12]]
with tf.control_dependencies([my_buffer.append(value2)]):
values = my_buffer.values
current_size = my_buffer.current_size
capacity = my_buffer.capacity
self.evaluate(tf.global_variables_initializer())
v, cs, cap = sess.run([values, current_size, capacity])
self.assertAllEqual(v, [value1, value2])
self.assertEqual(cs, 2)
self.assertEqual(cap, 2)
def test_resize(self):
"""Test buffer resizes if capacity is exceeded."""
with self.cached_session() as sess:
size, shape = 2, [2, 3]
my_buffer = tensor_buffer.TensorBuffer(size, shape, name='my_buffer')
value1 = [[1, 2, 3], [4, 5, 6]]
with tf.control_dependencies([my_buffer.append(value1)]):
value2 = [[7, 8, 9], [10, 11, 12]]
with tf.control_dependencies([my_buffer.append(value2)]):
value3 = [[13, 14, 15], [16, 17, 18]]
with tf.control_dependencies([my_buffer.append(value3)]):
values = my_buffer.values
current_size = my_buffer.current_size
capacity = my_buffer.capacity
self.evaluate(tf.global_variables_initializer())
v, cs, cap = sess.run([values, current_size, capacity])
self.assertAllEqual(v, [value1, value2, value3])
self.assertEqual(cs, 3)
self.assertEqual(cap, 4)
if __name__ == '__main__':
tf.test.main()