tensorflow_privacy/tutorials/imdb_tutorial.py
2020-01-02 16:35:37 +08:00

179 lines
7 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""Training a deep NN on IMDB reviews with differentially private Adam optimizer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from scipy.stats import norm
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
from tensorflow_privacy.privacy.optimizers import dp_optimizer
from privacy_accountants import *
from keras.preprocessing import sequence
#### FLAGS
tf.flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
tf.flags.DEFINE_float('learning_rate', 0.02, 'Learning rate for training')
tf.flags.DEFINE_float('noise_multiplier', 0.56,
'Ratio of the standard deviation to the clipping norm')
tf.flags.DEFINE_float('l2_norm_clip', 1, 'Clipping norm')
tf.flags.DEFINE_integer('epochs', 25, 'Number of epochs')
tf.flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
tf.flags.DEFINE_string('model_dir', None, 'Model directory')
FLAGS = tf.flags.FLAGS
microbatches=512
np.random.seed(0)
tf.set_random_seed(0)
max_features = 10000
# cut texts after this number of words (among top max_features most common words)
maxlen = 256
def rnn_model_fn(features, labels, mode):
# Define CNN architecture using tf.keras.layers.
input_layer = tf.reshape(features['x'], [-1,maxlen])
y = tf.keras.layers.Embedding(max_features,16).apply(input_layer)
y=tf.keras.layers.GlobalAveragePooling1D().apply(y)
y= tf.keras.layers.Dense(16, activation='relu').apply(y)
logits= tf.keras.layers.Dense(2).apply(y)
# Calculate loss as a vector (to support microbatches in DP-SGD).
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits)
# Define mean of loss across minibatch (for reporting through tf.Estimator).
scalar_loss = tf.reduce_mean(vector_loss)
# Configure the training op (for TRAIN mode).
if mode == tf.estimator.ModeKeys.TRAIN:
if FLAGS.dpsgd:
# Use DP version of GradientDescentOptimizer. Other optimizers are
# available in dp_optimizer. Most optimizers inheriting from
# tf.train.Optimizer should be wrappable in differentially private
# counterparts by calling dp_optimizer.optimizer_from_args().
optimizer = dp_optimizer.DPAdamGaussianOptimizer(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=microbatches,
learning_rate=FLAGS.learning_rate)
opt_loss = vector_loss
else:
optimizer = tf.train.AdamOptimizer(
learning_rate=FLAGS.learning_rate)
opt_loss = scalar_loss
global_step = tf.train.get_global_step()
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
# In the following, we pass the mean of the loss (scalar_loss) rather than
# the vector_loss because tf.estimator requires a scalar loss. This is only
# used for evaluation and debugging by tf.estimator. The actual loss being
# minimized is opt_loss defined above and passed to optimizer.minimize().
return tf.estimator.EstimatorSpec(mode=mode,
loss=scalar_loss,
train_op=train_op)
# Add evaluation metrics (for EVAL mode).
elif mode == tf.estimator.ModeKeys.EVAL:
eval_metric_ops = {
'accuracy':
tf.metrics.accuracy(
labels=labels,
predictions=tf.argmax(input=logits, axis=1))
}
return tf.estimator.EstimatorSpec(mode=mode,
loss=scalar_loss,
eval_metric_ops=eval_metric_ops)
def load_imdb():
(train_data,train_labels), (test_data,test_labels) = tf.keras.datasets.imdb.load_data(num_words=max_features)
train_data = sequence.pad_sequences(train_data, maxlen=maxlen).astype('float32')
test_data = sequence.pad_sequences(test_data, maxlen=maxlen).astype('float32')
return train_data,train_labels,test_data,test_labels
def main(unused_argv):
tf.logging.set_verbosity(3)
# Load training and test data.
train_data,train_labels,test_data,test_labels = load_imdb()
# Instantiate the tf.Estimator.
imdb_classifier = tf.estimator.Estimator(model_fn=rnn_model_fn,
model_dir=FLAGS.model_dir)
# Create tf.Estimator input functions for the training and test data.
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={'x': test_data},
y=test_labels,
num_epochs=1,
shuffle=False)
# Training loop.
steps_per_epoch = 25000 // 512
test_accuracy_list = []
for epoch in range(1, FLAGS.epochs + 1):
np.random.seed(epoch)
for step in range(steps_per_epoch):
tf.set_random_seed(0)
whether=np.random.random_sample(25000)>(1-512/25000)
subsampling=[i for i in np.arange(25000) if whether[i]]
global microbatches
microbatches=len(subsampling)
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={'x': train_data[subsampling]},
y=train_labels[subsampling],
batch_size=len(subsampling),
num_epochs=1,
shuffle=False)
# Train the model for one step.
imdb_classifier.train(input_fn=train_input_fn, steps=1)
# Evaluate the model and print results
eval_results = imdb_classifier.evaluate(input_fn=eval_input_fn)
test_accuracy = eval_results['accuracy']
test_accuracy_list.append(test_accuracy)
print('Test accuracy after %d epochs is: %.3f' % (epoch, test_accuracy))
# Compute the privacy budget expended so far.
if FLAGS.dpsgd:
eps = compute_epsP(epoch,FLAGS.noise_multiplier,25000,512,1e-5)
mu= compute_muP(epoch,FLAGS.noise_multiplier,25000,512)
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
print('For delta=1e-5, the current mu is: %.2f' % mu)
if mu>FLAGS.max_mu:
break
else:
print('Trained with vanilla non-private SGD optimizer')
if __name__ == '__main__':
tf.app.run()