tensorflow_privacy/research/audit_2020/fmnist_audit.py
2021-10-19 15:55:46 -07:00

176 lines
6.5 KiB
Python

# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""Run auditing on the FashionMNIST dataset."""
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
from tensorflow_privacy.privacy.optimizers import dp_optimizer_vectorized
from absl import app
from absl import flags
import audit
#### FLAGS
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 1.1,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
flags.DEFINE_integer('batch_size', 250, 'Batch size')
flags.DEFINE_integer('epochs', 24, 'Number of epochs')
flags.DEFINE_integer(
'microbatches', 250, 'Number of microbatches '
'(must evenly divide batch_size)')
flags.DEFINE_string('model', 'lr', 'model to use, pick between lr and nn')
flags.DEFINE_string('attack_type', "clip_aware", 'clip_aware or backdoor')
flags.DEFINE_integer('pois_ct', 1, 'Number of poisoning points')
flags.DEFINE_integer('num_trials', 100, 'Number of trials for auditing')
flags.DEFINE_float('attack_l2_norm', 10, 'Size of poisoning data')
flags.DEFINE_float('alpha', 0.05, '1-confidence')
flags.DEFINE_boolean('load_weights', False,
'if True, use weights saved in init_weights.h5')
FLAGS = flags.FLAGS
def compute_epsilon(train_size):
"""Computes epsilon value for given hyperparameters."""
if FLAGS.noise_multiplier == 0.0:
return float('inf')
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
sampling_probability = FLAGS.batch_size / train_size
steps = FLAGS.epochs * train_size / FLAGS.batch_size
rdp = compute_rdp(q=sampling_probability,
noise_multiplier=FLAGS.noise_multiplier,
steps=steps,
orders=orders)
# Delta is set to approximate 1 / (number of training points).
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
def build_model(x, y):
"""Build a keras model."""
input_shape = x.shape[1:]
num_classes = y.shape[1]
l2 = 0
if FLAGS.model == 'lr':
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=input_shape),
tf.keras.layers.Dense(num_classes, kernel_initializer='glorot_normal',
kernel_regularizer=tf.keras.regularizers.l2(l2))
])
elif FLAGS.model == 'nn':
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=input_shape),
tf.keras.layers.Dense(32, activation='relu',
kernel_initializer='glorot_normal',
kernel_regularizer=tf.keras.regularizers.l2(l2)),
tf.keras.layers.Dense(num_classes, kernel_initializer='glorot_normal',
kernel_regularizer=tf.keras.regularizers.l2(l2))
])
else:
raise NotImplementedError
return model
def train_model(model, train_x, train_y, save_weights=False):
"""Train the model on given data."""
optimizer = dp_optimizer_vectorized.VectorizedDPSGD(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=FLAGS.microbatches,
learning_rate=FLAGS.learning_rate)
loss = tf.keras.losses.CategoricalCrossentropy(
from_logits=True, reduction=tf.losses.Reduction.NONE)
# Compile model with Keras
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
if save_weights:
wts = model.get_weights()
np.save('save_model', wts)
model.set_weights(wts)
return model
if FLAGS.load_weights: # load preset weights
wts = np.load('save_model.npy', allow_pickle=True).tolist()
model.set_weights(wts)
# Train model with Keras
model.fit(train_x, train_y,
epochs=FLAGS.epochs,
validation_data=(train_x, train_y),
batch_size=FLAGS.batch_size,
verbose=0)
return model
def membership_test(model, pois_x, pois_y):
"""Membership inference - detect poisoning."""
probs = model.predict(np.concatenate([pois_x, np.zeros_like(pois_x)]))
return np.multiply(probs[0, :] - probs[1, :], pois_y).sum()
def train_and_score(dataset):
"""Complete training run with membership inference score."""
x, y, pois_x, pois_y, i = dataset
np.random.seed(i)
tf.set_random_seed(i)
tf.reset_default_graph()
model = build_model(x, y)
model = train_model(model, x, y)
return membership_test(model, pois_x, pois_y)
def main(unused_argv):
del unused_argv
# Load training and test data.
np.random.seed(0)
(train_x, train_y), _ = tf.keras.datasets.fashion_mnist.load_data()
train_inds = np.where(train_y < 2)[0]
train_x = -.5 + train_x[train_inds] / 255.
train_y = np.eye(2)[train_y[train_inds]]
# subsample dataset
ss_inds = np.random.choice(train_x.shape[0], train_x.shape[0]//2, replace=False)
train_x = train_x[ss_inds]
train_y = train_y[ss_inds]
init_model = build_model(train_x, train_y)
_ = train_model(init_model, train_x, train_y, save_weights=True)
auditor = audit.AuditAttack(train_x, train_y, train_and_score)
thresh, _, _ = auditor.run(FLAGS.pois_ct, FLAGS.attack_type, FLAGS.num_trials,
alpha=FLAGS.alpha, threshold=None,
l2_norm=FLAGS.attack_l2_norm)
_, eps, acc = auditor.run(FLAGS.pois_ct, FLAGS.attack_type, FLAGS.num_trials,
alpha=FLAGS.alpha, threshold=thresh,
l2_norm=FLAGS.attack_l2_norm)
epsilon_upper_bound = compute_epsilon(train_x.shape[0])
print("Analysis epsilon is {}.".format(epsilon_upper_bound))
print("At threshold={}, epsilon={}.".format(thresh, eps))
print("The best accuracy at distinguishing poisoning is {}.".format(acc))
if __name__ == '__main__':
app.run(main)