tensorflow_privacy/tutorials/logistic_regression_mnist.py
A. Unique TensorFlower 2b97c7c735 Logistic regression for mnist with new privacy analysis.
PiperOrigin-RevId: 252743967
2019-06-11 18:58:56 -07:00

219 lines
8.7 KiB
Python

# Copyright 2019, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DP Logistic Regression on MNIST.
DP Logistic Regression on MNIST with support for privacy-by-iteration analysis.
Feldman, Vitaly, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta.
"Privacy amplification by iteration."
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 521-532. IEEE, 2018.
https://arxiv.org/abs/1808.06651.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from absl import app
from absl import flags
from distutils.version import LooseVersion
import numpy as np
import tensorflow as tf
from privacy.optimizers import dp_optimizer
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
else:
GradientDescentOptimizer = tf.optimizers.SGD # pylint: disable=invalid-name
FLAGS = flags.FLAGS
flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
flags.DEFINE_float('learning_rate', 0.001, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 0.02,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_integer('batch_size', 1, 'Batch size')
flags.DEFINE_integer('epochs', 5, 'Number of epochs')
flags.DEFINE_integer('microbatches', 1, 'Number of microbatches '
'(must evenly divide batch_size)')
flags.DEFINE_float('regularizer', 0, 'L2 regularizer coefficient')
flags.DEFINE_string('model_dir', None, 'Model directory')
flags.DEFINE_float('data_l2_norm', 8,
'Bound on the L2 norm of normalized data.')
def lr_model_fn(features, labels, mode, nclasses, dim):
"""Model function for logistic regression."""
input_layer = tf.reshape(features['x'], tuple([-1]) + dim)
logits = tf.layers.dense(inputs=input_layer,
units=nclasses,
kernel_regularizer=tf.contrib.layers.l2_regularizer(
scale=FLAGS.regularizer),
bias_regularizer=tf.contrib.layers.l2_regularizer(
scale=FLAGS.regularizer)
)
# Calculate loss as a vector (to support microbatches in DP-SGD).
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits) + tf.losses.get_regularization_loss()
# Define mean of loss across minibatch (for reporting through tf.Estimator).
scalar_loss = tf.reduce_mean(vector_loss)
# Configure the training op (for TRAIN mode).
if mode == tf.estimator.ModeKeys.TRAIN:
if FLAGS.dpsgd:
# Use DP version of GradientDescentOptimizer. Other optimizers are
# available in dp_optimizer. Most optimizers inheriting from
# tf.train.Optimizer should be wrappable in differentially private
# counterparts by calling dp_optimizer.optimizer_from_args().
# The loss function is L-Lipschitz with L = sqrt(2*(||x||^2 + 1)) where
# ||x|| is the norm of the data.
optimizer = dp_optimizer.DPGradientDescentGaussianOptimizer(
l2_norm_clip=math.sqrt(2*(FLAGS.data_l2_norm**2 + 1)),
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=FLAGS.microbatches,
learning_rate=FLAGS.learning_rate)
opt_loss = vector_loss
else:
optimizer = GradientDescentOptimizer(learning_rate=FLAGS.learning_rate)
opt_loss = scalar_loss
global_step = tf.train.get_global_step()
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
# In the following, we pass the mean of the loss (scalar_loss) rather than
# the vector_loss because tf.estimator requires a scalar loss. This is only
# used for evaluation and debugging by tf.estimator. The actual loss being
# minimized is opt_loss defined above and passed to optimizer.minimize().
return tf.estimator.EstimatorSpec(mode=mode,
loss=scalar_loss,
train_op=train_op)
# Add evaluation metrics (for EVAL mode).
elif mode == tf.estimator.ModeKeys.EVAL:
eval_metric_ops = {
'accuracy':
tf.metrics.accuracy(
labels=labels,
predictions=tf.argmax(input=logits, axis=1))
}
return tf.estimator.EstimatorSpec(mode=mode,
loss=scalar_loss,
eval_metric_ops=eval_metric_ops)
def normalize_data(data, data_l2_norm):
"""Normalizes data such that each samples has bounded L2 norm.
Args:
data: the dataset. Each row represents one samples.
data_l2_norm: the target upper bound on the L2 norm.
"""
for i in range(data.shape[0]):
norm = np.linalg.norm(data[i])
if norm > data_l2_norm:
data[i] = data[i] / norm * data_l2_norm
def load_mnist(data_l2_norm=float('inf')):
"""Loads MNIST and preprocesses to combine training and validation data."""
train, test = tf.keras.datasets.mnist.load_data()
train_data, train_labels = train
test_data, test_labels = test
train_data = np.array(train_data, dtype=np.float32) / 255
test_data = np.array(test_data, dtype=np.float32) / 255
train_data = train_data.reshape(train_data.shape[0], -1)
test_data = test_data.reshape(test_data.shape[0], -1)
idx = np.random.permutation(len(train_data)) # shuffle data once
train_data = train_data[idx]
train_labels = train_labels[idx]
normalize_data(train_data, data_l2_norm)
normalize_data(test_data, data_l2_norm)
train_labels = np.array(train_labels, dtype=np.int32)
test_labels = np.array(test_labels, dtype=np.int32)
return train_data, train_labels, test_data, test_labels
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.INFO)
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
raise ValueError('Number of microbatches should divide evenly batch_size')
if FLAGS.data_l2_norm <= 0:
raise ValueError('FLAGS.data_l2_norm needs to be positive.')
if FLAGS.learning_rate > 8 / FLAGS.data_l2_norm**2:
raise ValueError('The amplification by iteration analysis requires'
'learning_rate <= 2 / beta, where beta is the smoothness'
'of the loss function and is upper bounded by ||x||^2 / 4'
'with ||x|| being the largest L2 norm of the samples.')
# Load training and test data.
# Smoothness = ||x||^2 / 4 where ||x|| is the largest L2 norm of the samples.
# To get bounded smoothness, we normalize the data such that each sample has a
# bounded L2 norm.
train_data, train_labels, test_data, test_labels = load_mnist(
data_l2_norm=FLAGS.data_l2_norm)
# Instantiate the tf.Estimator.
# pylint: disable=g-long-lambda
model_fn = lambda features, labels, mode: lr_model_fn(features, labels, mode,
nclasses=10,
dim=train_data.shape[1:]
)
mnist_classifier = tf.estimator.Estimator(
model_fn=model_fn,
model_dir=FLAGS.model_dir)
# Create tf.Estimator input functions for the training and test data.
# To analyze the per-user privacy loss, we keep the same orders of samples in
# each epoch by setting shuffle=False.
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={'x': train_data},
y=train_labels,
batch_size=FLAGS.batch_size,
num_epochs=FLAGS.epochs,
shuffle=False)
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={'x': test_data},
y=test_labels,
num_epochs=1,
shuffle=False)
# Train the model
steps_per_epoch = train_data.shape[0] // FLAGS.batch_size
mnist_classifier.train(input_fn=train_input_fn,
steps=steps_per_epoch * FLAGS.epochs)
# Evaluate the model and print results
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
test_accuracy = eval_results['accuracy']
print('Test accuracy after %d epochs is: %.3f' % (FLAGS.epochs,
test_accuracy))
if __name__ == '__main__':
app.run(main)