tensorflow_privacy/privacy/bolton/optimizer_test.py
Christopher Choquette Choo 751eaead54 Working bolton model without unit tests.
-- update to include pull request changes
changes include:
parameter renaming,
changing to mixin,
moving model to compile,
additional tests,
fixing huber loss
2019-06-10 16:11:47 -04:00

182 lines
No EOL
6 KiB
Python

# Copyright 2018, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Unit testing for optimizer.py"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.python.platform import test
from tensorflow.python.keras.optimizer_v2.optimizer_v2 import OptimizerV2
from tensorflow.python.keras import keras_parameterized
from privacy.bolton import model
from privacy.bolton import optimizer as opt
from absl.testing import parameterized
from absl.testing import absltest
class TestOptimizer(OptimizerV2):
"""Optimizer used for testing the Private optimizer"""
def __init__(self):
super(TestOptimizer, self).__init__('test')
self.not_private = 'test'
self.iterations = tf.Variable(1, dtype=tf.float32)
self._iterations = tf.Variable(1, dtype=tf.float32)
def _compute_gradients(self, loss, var_list, grad_loss=None):
return 'test'
def get_config(self):
return 'test'
def from_config(cls, config, custom_objects=None):
return 'test'
def _create_slots(self):
return 'test'
def _resource_apply_dense(self, grad, handle):
return 'test'
def _resource_apply_sparse(self, grad, handle, indices):
return 'test'
def get_updates(self, loss, params):
return 'test'
def apply_gradients(self, grads_and_vars, name=None):
return 'test'
def minimize(self, loss, var_list, grad_loss=None, name=None):
return 'test'
def get_gradients(self, loss, params):
return 'test'
class PrivateTest(keras_parameterized.TestCase):
"""Private Optimizer tests"""
@parameterized.named_parameters([
{'testcase_name': 'branch True, beta',
'fn': 'limit_learning_rate',
'args': [True,
tf.Variable(2, dtype=tf.float32),
tf.Variable(1, dtype=tf.float32)],
'result': tf.Variable(0.5, dtype=tf.float32),
'test_attr': 'learning_rate'},
{'testcase_name': 'branch True, gamma',
'fn': 'limit_learning_rate',
'args': [True,
tf.Variable(1, dtype=tf.float32),
tf.Variable(1, dtype=tf.float32)],
'result': tf.Variable(1, dtype=tf.float32),
'test_attr': 'learning_rate'},
{'testcase_name': 'branch False, beta',
'fn': 'limit_learning_rate',
'args': [False,
tf.Variable(2, dtype=tf.float32),
tf.Variable(1, dtype=tf.float32)],
'result': tf.Variable(0.5, dtype=tf.float32),
'test_attr': 'learning_rate'},
{'testcase_name': 'branch False, gamma',
'fn': 'limit_learning_rate',
'args': [False,
tf.Variable(1, dtype=tf.float32),
tf.Variable(1, dtype=tf.float32)],
'result': tf.Variable(1, dtype=tf.float32),
'test_attr': 'learning_rate'},
{'testcase_name': 'getattr',
'fn': '__getattr__',
'args': ['dtype'],
'result': tf.float32,
'test_attr': None},
])
def test_fn(self, fn, args, result, test_attr):
private = opt.Private(TestOptimizer())
res = getattr(private, fn, None)(*args)
if test_attr is not None:
res = getattr(private, test_attr, None)
if hasattr(res, 'numpy') and hasattr(result, 'numpy'): # both tensors/not
res = res.numpy()
result = result.numpy()
self.assertEqual(res, result)
@parameterized.named_parameters([
{'testcase_name': 'fn: get_updates',
'fn': 'get_updates',
'args': [0, 0]},
{'testcase_name': 'fn: get_config',
'fn': 'get_config',
'args': []},
{'testcase_name': 'fn: from_config',
'fn': 'from_config',
'args': [0]},
{'testcase_name': 'fn: _resource_apply_dense',
'fn': '_resource_apply_dense',
'args': [1, 1]},
{'testcase_name': 'fn: _resource_apply_sparse',
'fn': '_resource_apply_sparse',
'args': [1, 1, 1]},
{'testcase_name': 'fn: apply_gradients',
'fn': 'apply_gradients',
'args': [1]},
{'testcase_name': 'fn: minimize',
'fn': 'minimize',
'args': [1, 1]},
{'testcase_name': 'fn: _compute_gradients',
'fn': '_compute_gradients',
'args': [1, 1]},
{'testcase_name': 'fn: get_gradients',
'fn': 'get_gradients',
'args': [1, 1]},
])
def test_rerouted_function(self, fn, args):
optimizer = TestOptimizer()
optimizer = opt.Private(optimizer)
self.assertEqual(
getattr(optimizer, fn, lambda: 'fn not found')(*args),
'test'
)
@parameterized.named_parameters([
{'testcase_name': 'fn: limit_learning_rate',
'fn': 'limit_learning_rate',
'args': [1, 1, 1]}
])
def test_not_reroute_fn(self, fn, args):
optimizer = TestOptimizer()
optimizer = opt.Private(optimizer)
self.assertNotEqual(getattr(optimizer, fn, lambda: 'test')(*args),
'test')
@parameterized.named_parameters([
{'testcase_name': 'attr: not_private',
'attr': 'not_private'}
])
def test_reroute_attr(self, attr):
internal_optimizer = TestOptimizer()
optimizer = opt.Private(internal_optimizer)
self.assertEqual(optimizer._internal_optimizer, internal_optimizer)
@parameterized.named_parameters([
{'testcase_name': 'attr: _internal_optimizer',
'attr': '_internal_optimizer'}
])
def test_not_reroute_attr(self, attr):
internal_optimizer = TestOptimizer()
optimizer = opt.Private(internal_optimizer)
self.assertEqual(optimizer._internal_optimizer, internal_optimizer)
if __name__ == '__main__':
test.main()