forked from 626_privacy/tensorflow_privacy
93e9585f18
PiperOrigin-RevId: 229241117
105 lines
2.8 KiB
Python
105 lines
2.8 KiB
Python
# Copyright 2017 The 'Scalable Private Learning with PATE' Authors All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Plots LS(q).
|
|
|
|
A script in support of the PATE2 paper. NOT PRESENTLY USED.
|
|
|
|
The output is written to a specified directory as a pdf file.
|
|
"""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
import os
|
|
import sys
|
|
|
|
sys.path.append('..') # Main modules reside in the parent directory.
|
|
|
|
|
|
from absl import app
|
|
from absl import flags
|
|
import matplotlib
|
|
matplotlib.use('TkAgg')
|
|
import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top
|
|
import numpy as np
|
|
import smooth_sensitivity as pate_ss
|
|
|
|
plt.style.use('ggplot')
|
|
|
|
FLAGS = flags.FLAGS
|
|
|
|
flags.DEFINE_string('figures_dir', '', 'Path where the output is written to.')
|
|
|
|
|
|
def compute_ls_q(sigma, order, num_classes):
|
|
|
|
def beta(q):
|
|
return pate_ss._compute_rdp_gnmax(sigma, math.log(q), order)
|
|
|
|
def bu(q):
|
|
return pate_ss._compute_bu_gnmax(q, sigma, order)
|
|
|
|
def bl(q):
|
|
return pate_ss._compute_bl_gnmax(q, sigma, order)
|
|
|
|
def delta_beta(q):
|
|
if q == 0 or q > .8:
|
|
return 0
|
|
beta_q = beta(q)
|
|
beta_bu_q = beta(bu(q))
|
|
beta_bl_q = beta(bl(q))
|
|
assert beta_bl_q <= beta_q <= beta_bu_q
|
|
return beta_bu_q - beta_q # max(beta_bu_q - beta_q, beta_q - beta_bl_q)
|
|
|
|
logq0 = pate_ss.compute_logq0_gnmax(sigma, order)
|
|
logq1 = pate_ss._compute_logq1(sigma, order, num_classes)
|
|
print(math.exp(logq1), math.exp(logq0))
|
|
xs = np.linspace(0, .1, num=1000, endpoint=True)
|
|
ys = [delta_beta(x) for x in xs]
|
|
return xs, ys
|
|
|
|
|
|
def main(argv):
|
|
del argv # Unused.
|
|
|
|
sigma = 20
|
|
order = 20.
|
|
num_classes = 10
|
|
|
|
# sigma = 20
|
|
# order = 25.
|
|
# num_classes = 10
|
|
|
|
x_axis, ys = compute_ls_q(sigma, order, num_classes)
|
|
|
|
fig, ax = plt.subplots()
|
|
fig.set_figheight(4.5)
|
|
fig.set_figwidth(4.7)
|
|
|
|
ax.plot(x_axis, ys, alpha=.8, linewidth=5)
|
|
plt.xlabel('Number of queries answered', fontsize=16)
|
|
plt.ylabel(r'Privacy cost $\varepsilon$ at $\delta=10^{-8}$', fontsize=16)
|
|
ax.tick_params(labelsize=14)
|
|
fout_name = os.path.join(FLAGS.figures_dir, 'ls_of_q.pdf')
|
|
print('Saving the graph to ' + fout_name)
|
|
plt.show()
|
|
|
|
plt.close('all')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
app.run(main)
|