forked from 626_privacy/tensorflow_privacy
d5dcfec745
set_denominator was added so that the batch size doesn't need to be specified before constructing the optimizer, but it breaks the DPQuery abstraction. Now the optimizer uses a GaussianSumQuery instead of GaussianAverageQuery, and normalization by batch size is done inside the optimizer. Also instead of creating all DPQueries with a PrivacyLedger and then wrapping with QueryWithLedger, it is now sufficient to create the queries with no ledger and QueryWithLedger will construct the ledger and pass it to all inner queries. PiperOrigin-RevId: 251462353
151 lines
5.5 KiB
Python
151 lines
5.5 KiB
Python
# Copyright 2019, The TensorFlow Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Training a CNN on MNIST with Keras and the DP SGD optimizer."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from absl import app
|
|
from absl import flags
|
|
|
|
from distutils.version import LooseVersion
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from privacy.analysis.rdp_accountant import compute_rdp
|
|
from privacy.analysis.rdp_accountant import get_privacy_spent
|
|
from privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
|
|
|
|
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
|
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
|
|
else:
|
|
GradientDescentOptimizer = tf.optimizers.SGD # pylint: disable=invalid-name
|
|
|
|
flags.DEFINE_boolean(
|
|
'dpsgd', True, 'If True, train with DP-SGD. If False, '
|
|
'train with vanilla SGD.')
|
|
flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
|
|
flags.DEFINE_float('noise_multiplier', 1.1,
|
|
'Ratio of the standard deviation to the clipping norm')
|
|
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
|
|
flags.DEFINE_integer('batch_size', 256, 'Batch size')
|
|
flags.DEFINE_integer('epochs', 60, 'Number of epochs')
|
|
flags.DEFINE_integer(
|
|
'microbatches', 256, 'Number of microbatches '
|
|
'(must evenly divide batch_size)')
|
|
flags.DEFINE_string('model_dir', None, 'Model directory')
|
|
|
|
FLAGS = flags.FLAGS
|
|
|
|
|
|
def compute_epsilon(steps):
|
|
"""Computes epsilon value for given hyperparameters."""
|
|
if FLAGS.noise_multiplier == 0.0:
|
|
return float('inf')
|
|
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
|
sampling_probability = FLAGS.batch_size / 60000
|
|
rdp = compute_rdp(q=sampling_probability,
|
|
noise_multiplier=FLAGS.noise_multiplier,
|
|
steps=steps,
|
|
orders=orders)
|
|
# Delta is set to 1e-5 because MNIST has 60000 training points.
|
|
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
|
|
|
|
|
|
def load_mnist():
|
|
"""Loads MNIST and preprocesses to combine training and validation data."""
|
|
train, test = tf.keras.datasets.mnist.load_data()
|
|
train_data, train_labels = train
|
|
test_data, test_labels = test
|
|
|
|
train_data = np.array(train_data, dtype=np.float32) / 255
|
|
test_data = np.array(test_data, dtype=np.float32) / 255
|
|
|
|
train_data = train_data.reshape(train_data.shape[0], 28, 28, 1)
|
|
test_data = test_data.reshape(test_data.shape[0], 28, 28, 1)
|
|
|
|
train_labels = np.array(train_labels, dtype=np.int32)
|
|
test_labels = np.array(test_labels, dtype=np.int32)
|
|
|
|
train_labels = tf.keras.utils.to_categorical(train_labels, num_classes=10)
|
|
test_labels = tf.keras.utils.to_categorical(test_labels, num_classes=10)
|
|
|
|
assert train_data.min() == 0.
|
|
assert train_data.max() == 1.
|
|
assert test_data.min() == 0.
|
|
assert test_data.max() == 1.
|
|
|
|
return train_data, train_labels, test_data, test_labels
|
|
|
|
|
|
def main(unused_argv):
|
|
tf.logging.set_verbosity(tf.logging.INFO)
|
|
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
|
|
raise ValueError('Number of microbatches should divide evenly batch_size')
|
|
|
|
# Load training and test data.
|
|
train_data, train_labels, test_data, test_labels = load_mnist()
|
|
|
|
# Define a sequential Keras model
|
|
model = tf.keras.Sequential([
|
|
tf.keras.layers.Conv2D(16, 8,
|
|
strides=2,
|
|
padding='same',
|
|
activation='relu',
|
|
input_shape=(28, 28, 1)),
|
|
tf.keras.layers.MaxPool2D(2, 1),
|
|
tf.keras.layers.Conv2D(32, 4,
|
|
strides=2,
|
|
padding='valid',
|
|
activation='relu'),
|
|
tf.keras.layers.MaxPool2D(2, 1),
|
|
tf.keras.layers.Flatten(),
|
|
tf.keras.layers.Dense(32, activation='relu'),
|
|
tf.keras.layers.Dense(10)
|
|
])
|
|
|
|
if FLAGS.dpsgd:
|
|
optimizer = DPGradientDescentGaussianOptimizer(
|
|
l2_norm_clip=FLAGS.l2_norm_clip,
|
|
noise_multiplier=FLAGS.noise_multiplier,
|
|
num_microbatches=FLAGS.num_microbatches,
|
|
learning_rate=FLAGS.learning_rate,
|
|
unroll_microbatches=True)
|
|
# Compute vector of per-example loss rather than its mean over a minibatch.
|
|
loss = tf.keras.losses.CategoricalCrossentropy(
|
|
from_logits=True, reduction=tf.losses.Reduction.NONE)
|
|
else:
|
|
optimizer = GradientDescentOptimizer(learning_rate=FLAGS.learning_rate)
|
|
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
|
|
|
|
# Compile model with Keras
|
|
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
|
|
|
|
# Train model with Keras
|
|
model.fit(train_data, train_labels,
|
|
epochs=FLAGS.epochs,
|
|
validation_data=(test_data, test_labels),
|
|
batch_size=FLAGS.batch_size)
|
|
|
|
# Compute the privacy budget expended.
|
|
if FLAGS.dpsgd:
|
|
eps = compute_epsilon(FLAGS.epochs * 60000 // FLAGS.batch_size)
|
|
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
|
|
else:
|
|
print('Trained with vanilla non-private SGD optimizer')
|
|
|
|
if __name__ == '__main__':
|
|
app.run(main)
|