tensorflow_privacy/research
Edoardo Debenedetti ab4cb09399 Fix LiRA inference
2023-06-13 09:57:46 +02:00
..
audit_2020 Remove unused comments related to Python 2 compatibility. 2022-04-21 08:20:08 -07:00
dp_newton Implementation of differentially private second order methods ("Newton's method") for research project. 2023-01-09 15:22:37 -08:00
GDP_2019 Explicitly import estimator from tensorflow as a separate import instead of 2022-03-30 16:05:01 -07:00
hyperparameters_2022 Remove license from lr_acc.json file. 2022-05-05 16:47:13 -07:00
instahide_attack_2020 Rename jax.experimental.optimizers -> jax.example_libraries.optimizers 2022-08-05 16:24:49 -07:00
mi_lira_2021 Fix LiRA inference 2023-06-13 09:57:46 +02:00
mi_poison_2022 Fix LiRA inference 2023-06-13 09:57:46 +02:00
neuracrypt_attack_2021 Merge pull request #185 from carlini:neuracrypt 2022-02-18 21:10:54 +00:00
pate_2017 Add TensorFlow Privacy BUILD and WORKSPACE files. 2022-02-16 23:30:06 +00:00
pate_2018 [NumPy] Remove references to deprecated NumPy type aliases. 2022-12-22 10:32:59 -08:00
README.md Add missing licenses. 2019-01-14 16:02:35 -08:00

Research

This folder contains code to reproduce results from research papers. Currently, the following papers are included:

  • Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data (ICLR 2017): pate_2017

  • Scalable Private Learning with PATE (ICLR 2018): pate_2018