forked from 626_privacy/tensorflow_privacy
c3e7f08fa5
PiperOrigin-RevId: 425901093
69 lines
2.4 KiB
Python
69 lines
2.4 KiB
Python
# Copyright 2020, The TensorFlow Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Common tools for DP-SGD MNIST tutorials."""
|
|
|
|
import tensorflow as tf
|
|
import tensorflow_datasets as tfds
|
|
|
|
|
|
def get_cnn_model(features):
|
|
"""Given input features, returns the logits from a simple CNN model."""
|
|
input_layer = tf.reshape(features, [-1, 28, 28, 1])
|
|
y = tf.keras.layers.Conv2D(
|
|
16, 8, strides=2, padding='same', activation='relu').apply(input_layer)
|
|
y = tf.keras.layers.MaxPool2D(2, 1).apply(y)
|
|
y = tf.keras.layers.Conv2D(
|
|
32, 4, strides=2, padding='valid', activation='relu').apply(y)
|
|
y = tf.keras.layers.MaxPool2D(2, 1).apply(y)
|
|
y = tf.keras.layers.Flatten().apply(y)
|
|
y = tf.keras.layers.Dense(32, activation='relu').apply(y)
|
|
logits = tf.keras.layers.Dense(10).apply(y)
|
|
|
|
return logits
|
|
|
|
|
|
def make_input_fn(split, input_batch_size=256, repetitions=-1, tpu=False):
|
|
"""Make input function on given MNIST split."""
|
|
|
|
def input_fn(params=None):
|
|
"""A simple input function."""
|
|
batch_size = params.get('batch_size', input_batch_size)
|
|
|
|
def parser(example):
|
|
image, label = example['image'], example['label']
|
|
image = tf.cast(image, tf.float32)
|
|
image /= 255.0
|
|
label = tf.cast(label, tf.int32)
|
|
return image, label
|
|
|
|
dataset = tfds.load(name='mnist', split=split)
|
|
dataset = dataset.map(parser).shuffle(60000).repeat(repetitions).batch(
|
|
batch_size)
|
|
# If this input function is not meant for TPUs, we can stop here.
|
|
# Otherwise, we need to explicitly set its shape. Note that for unknown
|
|
# reasons, returning the latter format causes performance regression
|
|
# on non-TPUs.
|
|
if not tpu:
|
|
return dataset
|
|
|
|
# Give inputs statically known shapes; needed for TPUs.
|
|
images, labels = tf.data.make_one_shot_iterator(dataset).get_next()
|
|
# return images, labels
|
|
images.set_shape([batch_size, 28, 28, 1])
|
|
labels.set_shape([
|
|
batch_size,
|
|
])
|
|
return images, labels
|
|
|
|
return input_fn
|