forked from 626_privacy/tensorflow_privacy
5493a3baf0
accessing it via tf.estimator and depend on the tensorflow estimator target. PiperOrigin-RevId: 438419860
224 lines
8.6 KiB
Python
224 lines
8.6 KiB
Python
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# =============================================================================
|
|
"""Training a deep NN on MovieLens with differentially private Adam optimizer."""
|
|
|
|
from absl import app
|
|
from absl import flags
|
|
import numpy as np
|
|
import pandas as pd
|
|
from scipy import stats
|
|
from sklearn.model_selection import train_test_split
|
|
import tensorflow as tf
|
|
from tensorflow import estimator as tf_estimator
|
|
from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator
|
|
from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_eps_poisson
|
|
from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_mu_poisson
|
|
from tensorflow_privacy.privacy.optimizers import dp_optimizer
|
|
|
|
#### FLAGS
|
|
FLAGS = flags.FLAGS
|
|
flags.DEFINE_boolean(
|
|
'dpsgd', True, 'If True, train with DP-SGD. If False, '
|
|
'train with vanilla SGD.')
|
|
flags.DEFINE_float('learning_rate', .01, 'Learning rate for training')
|
|
flags.DEFINE_float('noise_multiplier', 0.55,
|
|
'Ratio of the standard deviation to the clipping norm')
|
|
flags.DEFINE_float('l2_norm_clip', 5, 'Clipping norm')
|
|
flags.DEFINE_integer('epochs', 25, 'Number of epochs')
|
|
flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
|
|
flags.DEFINE_string('model_dir', None, 'Model directory')
|
|
|
|
sampling_batch = 10000
|
|
microbatches = 10000
|
|
num_examples = 800167
|
|
|
|
|
|
def nn_model_fn(features, labels, mode):
|
|
"""NN adapted from github.com/hexiangnan/neural_collaborative_filtering."""
|
|
n_latent_factors_user = 10
|
|
n_latent_factors_movie = 10
|
|
n_latent_factors_mf = 5
|
|
|
|
user_input = tf.reshape(features['user'], [-1, 1])
|
|
item_input = tf.reshape(features['movie'], [-1, 1])
|
|
|
|
# number of users: 6040; number of movies: 3706
|
|
mf_embedding_user = tf.keras.layers.Embedding(
|
|
6040, n_latent_factors_mf, input_length=1)
|
|
mf_embedding_item = tf.keras.layers.Embedding(
|
|
3706, n_latent_factors_mf, input_length=1)
|
|
mlp_embedding_user = tf.keras.layers.Embedding(
|
|
6040, n_latent_factors_user, input_length=1)
|
|
mlp_embedding_item = tf.keras.layers.Embedding(
|
|
3706, n_latent_factors_movie, input_length=1)
|
|
|
|
# GMF part
|
|
# Flatten the embedding vector as latent features in GMF
|
|
mf_user_latent = tf.keras.layers.Flatten()(mf_embedding_user(user_input))
|
|
mf_item_latent = tf.keras.layers.Flatten()(mf_embedding_item(item_input))
|
|
# Element-wise multiply
|
|
mf_vector = tf.keras.layers.multiply([mf_user_latent, mf_item_latent])
|
|
|
|
# MLP part
|
|
# Flatten the embedding vector as latent features in MLP
|
|
mlp_user_latent = tf.keras.layers.Flatten()(mlp_embedding_user(user_input))
|
|
mlp_item_latent = tf.keras.layers.Flatten()(mlp_embedding_item(item_input))
|
|
# Concatenation of two latent features
|
|
mlp_vector = tf.keras.layers.concatenate([mlp_user_latent, mlp_item_latent])
|
|
|
|
predict_vector = tf.keras.layers.concatenate([mf_vector, mlp_vector])
|
|
|
|
logits = tf.keras.layers.Dense(5)(predict_vector)
|
|
|
|
# Calculate loss as a vector (to support microbatches in DP-SGD).
|
|
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
|
labels=labels, logits=logits)
|
|
# Define mean of loss across minibatch (for reporting through tf.Estimator).
|
|
scalar_loss = tf.reduce_mean(vector_loss)
|
|
|
|
# Configure the training op (for TRAIN mode).
|
|
if mode == tf_estimator.ModeKeys.TRAIN:
|
|
if FLAGS.dpsgd:
|
|
# Use DP version of GradientDescentOptimizer. Other optimizers are
|
|
# available in dp_optimizer. Most optimizers inheriting from
|
|
# tf.compat.v1.train.Optimizer should be wrappable in differentially
|
|
# private counterparts by calling dp_optimizer.optimizer_from_args().
|
|
optimizer = dp_optimizer.DPAdamGaussianOptimizer(
|
|
l2_norm_clip=FLAGS.l2_norm_clip,
|
|
noise_multiplier=FLAGS.noise_multiplier,
|
|
num_microbatches=microbatches,
|
|
learning_rate=FLAGS.learning_rate)
|
|
opt_loss = vector_loss
|
|
else:
|
|
optimizer = tf.compat.v1.train.AdamOptimizer(
|
|
learning_rate=FLAGS.learning_rate)
|
|
opt_loss = scalar_loss
|
|
|
|
global_step = tf.compat.v1.train.get_global_step()
|
|
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
|
|
# In the following, we pass the mean of the loss (scalar_loss) rather than
|
|
# the vector_loss because tf.estimator requires a scalar loss. This is only
|
|
# used for evaluation and debugging by tf.estimator. The actual loss being
|
|
# minimized is opt_loss defined above and passed to optimizer.minimize().
|
|
return tf_estimator.EstimatorSpec(
|
|
mode=mode, loss=scalar_loss, train_op=train_op)
|
|
|
|
# Add evaluation metrics (for EVAL mode).
|
|
if mode == tf_estimator.ModeKeys.EVAL:
|
|
eval_metric_ops = {
|
|
'rmse':
|
|
tf.compat.v1.metrics.root_mean_squared_error(
|
|
labels=tf.cast(labels, tf.float32),
|
|
predictions=tf.tensordot(
|
|
a=tf.nn.softmax(logits, axis=1),
|
|
b=tf.constant(np.array([0, 1, 2, 3, 4]), dtype=tf.float32),
|
|
axes=1))
|
|
}
|
|
return tf_estimator.EstimatorSpec(
|
|
mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
|
|
return None
|
|
|
|
|
|
def load_movielens():
|
|
"""Loads MovieLens 1M as from https://grouplens.org/datasets/movielens/1m."""
|
|
data = pd.read_csv(
|
|
'ratings.dat',
|
|
sep='::',
|
|
header=None,
|
|
names=['userId', 'movieId', 'rating', 'timestamp'])
|
|
n_users = len(set(data['userId']))
|
|
n_movies = len(set(data['movieId']))
|
|
print('number of movie: ', n_movies)
|
|
print('number of user: ', n_users)
|
|
|
|
# give unique dense movie index to movieId
|
|
data['movieIndex'] = stats.rankdata(data['movieId'], method='dense')
|
|
# minus one to reduce the minimum value to 0, which is the start of col index
|
|
|
|
print('number of ratings:', data.shape[0])
|
|
print('percentage of sparsity:',
|
|
(1 - data.shape[0] / n_users / n_movies) * 100, '%')
|
|
|
|
train, test = train_test_split(data, test_size=0.2, random_state=100)
|
|
|
|
return train.values - 1, test.values - 1, np.mean(train['rating'])
|
|
|
|
|
|
def main(unused_argv):
|
|
tf.compat.v1.logging.set_verbosity(3)
|
|
|
|
# Load training and test data.
|
|
train_data, test_data, _ = load_movielens()
|
|
|
|
# Instantiate the tf.Estimator.
|
|
ml_classifier = tf_estimator.Estimator(
|
|
model_fn=nn_model_fn, model_dir=FLAGS.model_dir)
|
|
|
|
# Create tf.Estimator input functions for the training and test data.
|
|
eval_input_fn = tf_compat_v1_estimator.inputs.numpy_input_fn(
|
|
x={
|
|
'user': test_data[:, 0],
|
|
'movie': test_data[:, 4]
|
|
},
|
|
y=test_data[:, 2],
|
|
num_epochs=1,
|
|
shuffle=False)
|
|
|
|
# Training loop.
|
|
steps_per_epoch = num_examples // sampling_batch
|
|
test_accuracy_list = []
|
|
for epoch in range(1, FLAGS.epochs + 1):
|
|
for _ in range(steps_per_epoch):
|
|
whether = np.random.random_sample(num_examples) > (
|
|
1 - sampling_batch / num_examples)
|
|
subsampling = [i for i in np.arange(num_examples) if whether[i]]
|
|
global microbatches
|
|
microbatches = len(subsampling)
|
|
|
|
train_input_fn = tf_compat_v1_estimator.inputs.numpy_input_fn(
|
|
x={
|
|
'user': train_data[subsampling, 0],
|
|
'movie': train_data[subsampling, 4]
|
|
},
|
|
y=train_data[subsampling, 2],
|
|
batch_size=len(subsampling),
|
|
num_epochs=1,
|
|
shuffle=True)
|
|
# Train the model for one step.
|
|
ml_classifier.train(input_fn=train_input_fn, steps=1)
|
|
|
|
# Evaluate the model and print results
|
|
eval_results = ml_classifier.evaluate(input_fn=eval_input_fn)
|
|
test_accuracy = eval_results['rmse']
|
|
test_accuracy_list.append(test_accuracy)
|
|
print('Test RMSE after %d epochs is: %.3f' % (epoch, test_accuracy))
|
|
|
|
# Compute the privacy budget expended so far.
|
|
if FLAGS.dpsgd:
|
|
eps = compute_eps_poisson(epoch, FLAGS.noise_multiplier, num_examples,
|
|
sampling_batch, 1e-6)
|
|
mu = compute_mu_poisson(epoch, FLAGS.noise_multiplier, num_examples,
|
|
sampling_batch)
|
|
print('For delta=1e-6, the current epsilon is: %.2f' % eps)
|
|
print('For delta=1e-6, the current mu is: %.2f' % mu)
|
|
|
|
if mu > FLAGS.max_mu:
|
|
break
|
|
else:
|
|
print('Trained with vanilla non-private SGD optimizer')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
app.run(main)
|