tensorflow_privacy/privacy/bolton/model.py
Christopher Choquette Choo ec18db5ec5 Working bolton model without unit tests.
-- moving to Bolton Optimizer
Model is now just a convenient wrapper and example for users.
Optimizer holds ALL Bolton privacy requirements.
Optimizer is used as a context manager, and must be passed the model's layers.
Unit tests incomplete, committing for visibility into the design.
2019-06-13 01:01:31 -04:00

551 lines
20 KiB
Python

# Copyright 2018, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Bolton model for bolton method of differentially private ML"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.python.keras.models import Model
from tensorflow.python.keras import optimizers
from tensorflow.python.framework import ops as _ops
from privacy.bolton.loss import StrongConvexMixin
from privacy.bolton.optimizer import Bolton
_accepted_distributions = ['laplace']
class BoltonModel(Model):
"""
Bolton episilon-delta model
Uses 4 key steps to achieve privacy guarantees:
1. Adds noise to weights after training (output perturbation).
2. Projects weights to R after each batch
3. Limits learning rate
4. Use a strongly convex loss function (see compile)
For more details on the strong convexity requirements, see:
Bolt-on Differential Privacy for Scalable Stochastic Gradient
Descent-based Analytics by Xi Wu et. al.
"""
def __init__(self,
n_classes,
# noise_distribution='laplace',
seed=1,
dtype=tf.float32
):
""" private constructor.
Args:
n_classes: number of output classes to predict.
epsilon: level of privacy guarantee
noise_distribution: distribution to pull weight perturbations from
weights_initializer: initializer for weights
seed: random seed to use
dtype: data type to use for tensors
"""
# if noise_distribution not in _accepted_distributions:
# raise ValueError('Detected noise distribution: {0} not one of: {1} valid'
# 'distributions'.format(noise_distribution,
# _accepted_distributions))
# if epsilon <= 0:
# raise ValueError('Detected epsilon: {0}. '
# 'Valid range is 0 < epsilon <inf'.format(epsilon))
# self.epsilon = epsilon
super(BoltonModel, self).__init__(name='bolton', dynamic=False)
self.n_classes = n_classes
self.force = False
# self.noise_distribution = noise_distribution
self.seed = seed
self.__in_fit = False
self._layers_instantiated = False
# self._callback = MyCustomCallback()
self._dtype = dtype
def call(self, inputs):
"""Forward pass of network
Args:
inputs: inputs to neural network
Returns:
"""
return self.output_layer(inputs)
def compile(self,
optimizer='SGD',
loss=None,
metrics=None,
loss_weights=None,
sample_weight_mode=None,
weighted_metrics=None,
target_tensors=None,
distribute=None,
**kwargs):
"""See super class. Default optimizer used in Bolton method is SGD.
"""
for key, val in StrongConvexMixin.__dict__.items():
if callable(val) and getattr(loss, key, None) is None:
raise ValueError("Please ensure you are passing a valid StrongConvex "
"loss that has all the required methods "
"implemented. "
"Required method: {0} not found".format(key))
if not self._layers_instantiated: # compile may be called multiple times
kernel_intiializer = kwargs.get('kernel_initializer',
tf.initializers.GlorotUniform)
self.output_layer = tf.keras.layers.Dense(
self.n_classes,
kernel_regularizer=loss.kernel_regularizer(),
kernel_initializer=kernel_intiializer(),
)
# if we don't do regularization here, we require the user to
# re-instantiate the model each time they want to change the penalty
# weighting
self._layers_instantiated = True
self.output_layer.kernel_regularizer.l2 = loss.reg_lambda
if not isinstance(optimizer, Bolton):
optimizer = optimizers.get(optimizer)
optimizer = Bolton(optimizer, loss)
super(BoltonModel, self).compile(optimizer,
loss=loss,
metrics=metrics,
loss_weights=loss_weights,
sample_weight_mode=sample_weight_mode,
weighted_metrics=weighted_metrics,
target_tensors=target_tensors,
distribute=distribute,
**kwargs
)
# def _post_fit(self, x, n_samples):
# """Implements 1-time weight changes needed for Bolton method.
# In this case, specifically implements the noise addition
# assuming a strongly convex function.
#
# Args:
# x: inputs
# n_samples: number of samples in the inputs. In case the number
# cannot be readily determined by inspecting x.
#
# Returns:
#
# """
# data_size = None
# if n_samples is not None:
# data_size = n_samples
# elif hasattr(x, 'shape'):
# data_size = x.shape[0]
# elif hasattr(x, "__len__"):
# data_size = len(x)
# elif data_size is None:
# if n_samples is None:
# raise ValueError("Unable to detect the number of training "
# "samples and n_smaples was None. "
# "either pass a dataset with a .shape or "
# "__len__ attribute or explicitly pass the "
# "number of samples as n_smaples.")
# for layer in self.layers:
# # layer.kernel = layer.kernel + self._get_noise(
# # data_size
# # )
# input_dim = layer.kernel.numpy().shape[0]
# layer.kernel = layer.kernel + self.optimizer.get_noise(
# self.loss,
# data_size,
# input_dim,
# self.n_classes,
# self.class_weight
# )
def fit(self,
x=None,
y=None,
batch_size=None,
epochs=1,
verbose=1,
callbacks=None,
validation_split=0.0,
validation_data=None,
shuffle=True,
class_weight=None,
sample_weight=None,
initial_epoch=0,
steps_per_epoch=None,
validation_steps=None,
validation_freq=1,
max_queue_size=10,
workers=1,
use_multiprocessing=False,
n_samples=None,
epsilon=2,
noise_distribution='laplace',
**kwargs):
"""Reroutes to super fit with additional Bolton delta-epsilon privacy
requirements implemented. Note, inputs must be normalized s.t. ||x|| < 1
Requirements are as follows:
1. Adds noise to weights after training (output perturbation).
2. Projects weights to R after each batch
3. Limits learning rate
4. Use a strongly convex loss function (see compile)
See super implementation for more details.
Args:
n_samples: the number of individual samples in x.
Returns:
"""
self.__in_fit = True
# cb = [self.optimizer.callbacks]
# if callbacks is not None:
# cb.extend(callbacks)
# callbacks = cb
if class_weight is None:
class_weight = self.calculate_class_weights(class_weight)
# self.class_weight = class_weight
with self.optimizer(noise_distribution,
epsilon,
self.layers,
class_weight,
n_samples,
self.n_classes,
) as optim:
out = super(BoltonModel, self).fit(x=x,
y=y,
batch_size=batch_size,
epochs=epochs,
verbose=verbose,
callbacks=callbacks,
validation_split=validation_split,
validation_data=validation_data,
shuffle=shuffle,
class_weight=class_weight,
sample_weight=sample_weight,
initial_epoch=initial_epoch,
steps_per_epoch=steps_per_epoch,
validation_steps=validation_steps,
validation_freq=validation_freq,
max_queue_size=max_queue_size,
workers=workers,
use_multiprocessing=use_multiprocessing,
**kwargs
)
return out
def fit_generator(self,
generator,
steps_per_epoch=None,
epochs=1,
verbose=1,
callbacks=None,
validation_data=None,
validation_steps=None,
validation_freq=1,
class_weight=None,
max_queue_size=10,
workers=1,
use_multiprocessing=False,
shuffle=True,
initial_epoch=0,
n_samples=None
):
"""
This method is the same as fit except for when the passed dataset
is a generator. See super method and fit for more details.
Args:
n_samples: number of individual samples in x
"""
if class_weight is None:
class_weight = self.calculate_class_weights(class_weight)
self.class_weight = class_weight
out = super(BoltonModel, self).fit_generator(
generator,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
verbose=verbose,
callbacks=callbacks,
validation_data=validation_data,
validation_steps=validation_steps,
validation_freq=validation_freq,
class_weight=class_weight,
max_queue_size=max_queue_size,
workers=workers,
use_multiprocessing=use_multiprocessing,
shuffle=shuffle,
initial_epoch=initial_epoch
)
if not self.__in_fit:
self._post_fit(generator, n_samples)
return out
def calculate_class_weights(self,
class_weights=None,
class_counts=None,
num_classes=None
):
"""
Calculates class weighting to be used in training. Can be on
Args:
class_weights: str specifying type, array giving weights, or None.
class_counts: If class_weights is not None, then an array of
the number of samples for each class
num_classes: If class_weights is not None, then the number of
classes.
Returns: class_weights as 1D tensor, to be passed to model's fit method.
"""
# Value checking
class_keys = ['balanced']
is_string = False
if isinstance(class_weights, str):
is_string = True
if class_weights not in class_keys:
raise ValueError("Detected string class_weights with "
"value: {0}, which is not one of {1}."
"Please select a valid class_weight type"
"or pass an array".format(class_weights,
class_keys))
if class_counts is None:
raise ValueError("Class counts must be provided if using "
"class_weights=%s" % class_weights)
class_counts_shape = tf.Variable(class_counts,
trainable=False,
dtype=self._dtype).shape
if len(class_counts_shape) != 1:
raise ValueError('class counts must be a 1D array.'
'Detected: {0}'.format(class_counts_shape))
if num_classes is None:
raise ValueError("num_classes must be provided if using "
"class_weights=%s" % class_weights)
elif class_weights is not None:
if num_classes is None:
raise ValueError("You must pass a value for num_classes if"
"creating an array of class_weights")
# performing class weight calculation
if class_weights is None:
class_weights = 1
elif is_string and class_weights == 'balanced':
num_samples = sum(class_counts)
weighted_counts = tf.dtypes.cast(tf.math.multiply(num_classes,
class_counts,
),
self._dtype
)
class_weights = tf.Variable(num_samples, dtype=self._dtype) / \
tf.Variable(weighted_counts, dtype=self._dtype)
else:
class_weights = _ops.convert_to_tensor_v2(class_weights)
if len(class_weights.shape) != 1:
raise ValueError("Detected class_weights shape: {0} instead of "
"1D array".format(class_weights.shape))
if class_weights.shape[0] != num_classes:
raise ValueError(
"Detected array length: {0} instead of: {1}".format(
class_weights.shape[0],
num_classes
)
)
return class_weights
# def _project_weights_to_r(self, r, force=False):
# """helper method to normalize the weights to the R-ball.
#
# Args:
# r: radius of "R-Ball". Scalar to normalize to.
# force: True to normalize regardless of previous weight values.
# False to check if weights > R-ball and only normalize then.
#
# Returns:
#
# """
# for layer in self.layers:
# weight_norm = tf.norm(layer.kernel, axis=0)
# if force:
# layer.kernel = layer.kernel / (weight_norm / r)
# elif tf.reduce_sum(tf.cast(weight_norm > r, dtype=self._dtype)) > 0:
# layer.kernel = layer.kernel / (weight_norm / r)
# def _get_noise(self, distribution, data_size):
# """Sample noise to be added to weights for privacy guarantee
#
# Args:
# distribution: the distribution type to pull noise from
# data_size: the number of samples
#
# Returns: noise in shape of layer's weights to be added to the weights.
#
# """
# distribution = distribution.lower()
# input_dim = self.layers[0].kernel.numpy().shape[0]
# loss = self.loss
# if distribution == _accepted_distributions[0]: # laplace
# per_class_epsilon = self.epsilon / (self.n_classes)
# l2_sensitivity = (2 *
# loss.lipchitz_constant(self.class_weight)) / \
# (loss.gamma() * data_size)
# unit_vector = tf.random.normal(shape=(input_dim, self.n_classes),
# mean=0,
# seed=1,
# stddev=1.0,
# dtype=self._dtype)
# unit_vector = unit_vector / tf.math.sqrt(
# tf.reduce_sum(tf.math.square(unit_vector), axis=0)
# )
#
# beta = l2_sensitivity / per_class_epsilon
# alpha = input_dim # input_dim
# gamma = tf.random.gamma([self.n_classes],
# alpha,
# beta=1 / beta,
# seed=1,
# dtype=self._dtype
# )
# return unit_vector * gamma
# raise NotImplementedError('Noise distribution: {0} is not '
# 'a valid distribution'.format(distribution))
if __name__ == '__main__':
import tensorflow as tf
import os
import time
import matplotlib.pyplot as plt
_URL = 'https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/facades.tar.gz'
path_to_zip = tf.keras.utils.get_file('facades.tar.gz',
origin=_URL,
extract=True)
PATH = os.path.join(os.path.dirname(path_to_zip), 'facades/')
BUFFER_SIZE = 400
BATCH_SIZE = 1
IMG_WIDTH = 256
IMG_HEIGHT = 256
def load(image_file):
image = tf.io.read_file(image_file)
image = tf.image.decode_jpeg(image)
w = tf.shape(image)[1]
w = w // 2
real_image = image[:, :w, :]
input_image = image[:, w:, :]
input_image = tf.cast(input_image, tf.float32)
real_image = tf.cast(real_image, tf.float32)
return input_image, real_image
inp, re = load(PATH + 'train/100.jpg')
# casting to int for matplotlib to show the image
plt.figure()
plt.imshow(inp / 255.0)
plt.figure()
plt.imshow(re / 255.0)
def resize(input_image, real_image, height, width):
input_image = tf.image.resize(input_image, [height, width],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
real_image = tf.image.resize(real_image, [height, width],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
return input_image, real_image
def random_crop(input_image, real_image):
stacked_image = tf.stack([input_image, real_image], axis=0)
cropped_image = tf.image.random_crop(
stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, 3])
return cropped_image[0], cropped_image[1]
def normalize(input_image, real_image):
input_image = (input_image / 127.5) - 1
real_image = (real_image / 127.5) - 1
return input_image, real_image
@tf.function()
def random_jitter(input_image, real_image):
# resizing to 286 x 286 x 3
input_image, real_image = resize(input_image, real_image, 286, 286)
# randomly cropping to 256 x 256 x 3
input_image, real_image = random_crop(input_image, real_image)
if tf.random.uniform(()) > 0.5:
# random mirroring
input_image = tf.image.flip_left_right(input_image)
real_image = tf.image.flip_left_right(real_image)
return input_image, real_image
def load_image_train(image_file):
input_image, real_image = load(image_file)
input_image, real_image = random_jitter(input_image, real_image)
input_image, real_image = normalize(input_image, real_image)
return input_image, real_image
def load_image_test(image_file):
input_image, real_image = load(image_file)
input_image, real_image = resize(input_image, real_image,
IMG_HEIGHT, IMG_WIDTH)
input_image, real_image = normalize(input_image, real_image)
return input_image, real_image
train_dataset = tf.data.Dataset.list_files(PATH + 'train/*.jpg')
train_dataset = train_dataset.shuffle(BUFFER_SIZE)
train_dataset = train_dataset.map(load_image_train,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
train_dataset = train_dataset.batch(1)
# steps_per_epoch = training_utils.infer_steps_for_dataset(
# train_dataset, None, epochs=1, steps_name='steps')
# for batch in train_dataset:
# print(batch[1].shape)
test_dataset = tf.data.Dataset.list_files(PATH + 'test/*.jpg')
# shuffling so that for every epoch a different image is generated
# to predict and display the progress of our model.
train_dataset = train_dataset.shuffle(BUFFER_SIZE)
test_dataset = test_dataset.map(load_image_test)
test_dataset = test_dataset.batch(1)
be = BoltonModel(3, 2)
from tensorflow.python.keras.optimizer_v2 import adam
from privacy.bolton import loss
test = adam.Adam()
l = loss.StrongConvexBinaryCrossentropy(1, 2, 1)
be.compile(test, l)
print("Eager exeuction: {0}".format(tf.executing_eagerly()))
be.fit(train_dataset, verbose=0, steps_per_epoch=1, n_samples=1)