tensorflow_privacy/research/pate_2018/ICLR2018/plot_ls_q.py
Nicolas Papernot 93e9585f18 Add missing licenses.
PiperOrigin-RevId: 229241117
2019-01-14 16:02:35 -08:00

105 lines
2.8 KiB
Python

# Copyright 2017 The 'Scalable Private Learning with PATE' Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Plots LS(q).
A script in support of the PATE2 paper. NOT PRESENTLY USED.
The output is written to a specified directory as a pdf file.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import sys
sys.path.append('..') # Main modules reside in the parent directory.
from absl import app
from absl import flags
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top
import numpy as np
import smooth_sensitivity as pate_ss
plt.style.use('ggplot')
FLAGS = flags.FLAGS
flags.DEFINE_string('figures_dir', '', 'Path where the output is written to.')
def compute_ls_q(sigma, order, num_classes):
def beta(q):
return pate_ss._compute_rdp_gnmax(sigma, math.log(q), order)
def bu(q):
return pate_ss._compute_bu_gnmax(q, sigma, order)
def bl(q):
return pate_ss._compute_bl_gnmax(q, sigma, order)
def delta_beta(q):
if q == 0 or q > .8:
return 0
beta_q = beta(q)
beta_bu_q = beta(bu(q))
beta_bl_q = beta(bl(q))
assert beta_bl_q <= beta_q <= beta_bu_q
return beta_bu_q - beta_q # max(beta_bu_q - beta_q, beta_q - beta_bl_q)
logq0 = pate_ss.compute_logq0_gnmax(sigma, order)
logq1 = pate_ss._compute_logq1(sigma, order, num_classes)
print(math.exp(logq1), math.exp(logq0))
xs = np.linspace(0, .1, num=1000, endpoint=True)
ys = [delta_beta(x) for x in xs]
return xs, ys
def main(argv):
del argv # Unused.
sigma = 20
order = 20.
num_classes = 10
# sigma = 20
# order = 25.
# num_classes = 10
x_axis, ys = compute_ls_q(sigma, order, num_classes)
fig, ax = plt.subplots()
fig.set_figheight(4.5)
fig.set_figwidth(4.7)
ax.plot(x_axis, ys, alpha=.8, linewidth=5)
plt.xlabel('Number of queries answered', fontsize=16)
plt.ylabel(r'Privacy cost $\varepsilon$ at $\delta=10^{-8}$', fontsize=16)
ax.tick_params(labelsize=14)
fout_name = os.path.join(FLAGS.figures_dir, 'ls_of_q.pdf')
print('Saving the graph to ' + fout_name)
plt.show()
plt.close('all')
if __name__ == '__main__':
app.run(main)