mia_on_model_distillation/lira-pytorch/wide_resnet.py

76 lines
2.7 KiB
Python
Raw Permalink Normal View History

2024-11-29 17:16:09 -07:00
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
class wide_basic(nn.Module):
def __init__(self, in_planes, planes, dropout_rate, stride=1):
super(wide_basic, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1)
self.dropout = nn.Dropout(p=dropout_rate)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride),
)
def forward(self, x):
out = self.conv1(F.relu(self.bn1(x)))
out = self.dropout(out)
out = self.conv2(F.relu(self.bn2(out)))
out += self.shortcut(x)
return out
class WideResNet(nn.Module):
def __init__(self, depth, widen_factor, dropout_rate, n_classes):
super(WideResNet, self).__init__()
self.in_planes = 16
assert (depth - 4) % 6 == 0, "Wide-ResNet depth should be 6n+4"
n = (depth - 4) // 6
k = widen_factor
stages = [16, 16 * k, 32 * k, 64 * k]
self.conv1 = nn.Conv2d(3, stages[0], kernel_size=3, stride=1, padding=1)
self.layer1 = self._wide_layer(wide_basic, stages[1], n, dropout_rate, stride=1)
self.layer2 = self._wide_layer(wide_basic, stages[2], n, dropout_rate, stride=2)
self.layer3 = self._wide_layer(wide_basic, stages[3], n, dropout_rate, stride=2)
self.bn1 = nn.BatchNorm2d(stages[3], momentum=0.9)
self.linear = nn.Linear(stages[3], n_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
nn.init.constant_(m.bias, 0)
def _wide_layer(self, block, planes, n_blocks, dropout_rate, stride):
strides = [stride] + [1] * (int(n_blocks) - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, dropout_rate, stride))
self.in_planes = planes
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = F.relu(self.bn1(out))
out = F.avg_pool2d(out, 8)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out