mia_on_model_distillation/cifar10-fast-simple/train.py

255 lines
7.9 KiB
Python
Raw Permalink Normal View History

2024-11-20 12:11:10 -07:00
import time
import copy
import torch
import torch.nn as nn
import torchvision
import model
2024-11-23 22:37:07 -07:00
def load_model(model_path, device, dtype, train_data):
weights = model.patch_whitening(train_data[:10000, :, 4:-4, 4:-4])
train_model = model.Model(weights, c_in=3, c_out=10, scale_out=0.125)
train_model.load_state_dict(torch.load(model_path, weights_only=True))
# Convert model weights to half precision
train_model.to(dtype)
# Convert BatchNorm back to single precision for better accuracy
for module in train_model.modules():
if isinstance(module, nn.BatchNorm2d):
module.float()
# Upload model to GPU
train_model.to(device)
return train_model
def eval_model(smodel, device, dtype, data, labels, batch_size):
smodel.eval()
eval_correct = []
with torch.no_grad():
for i in range(0, len(data), batch_size):
regular_inputs = data[i : i + batch_size].to(device, dtype)
flipped_inputs = torch.flip(regular_inputs, [-1])
logits1 = smodel(regular_inputs)
logits2 = smodel(flipped_inputs)
# Final logits are average of augmented logits
logits = torch.mean(torch.stack([logits1, logits2], dim=0), dim=0)
# Compute correct predictions
correct = logits.max(dim=1)[1] == labels[i : i + batch_size].to(device)
eval_correct.append(correct.detach().type(torch.float64))
# Accuracy is average number of correct predictions
eval_acc = torch.mean(torch.cat(eval_correct)).item()
return eval_acc
2024-11-23 23:19:01 -07:00
def run_shadow_model(shadow_path, device, dtype, data, labels, batch_size):
smodel = load_model(shadow_path, device, dtype, data)
eval_acc = eval_model(smodel, device, dtype, data, labels, batch_size)
print(f"Evaluation Accuracy: {eval_acc:.4f}")
2024-11-23 23:32:39 -07:00
def train_shadow(shadow_path, train_data, train_targets, batch_size):
2024-11-23 23:19:01 -07:00
# Configurable parameters
epochs = 10
momentum = 0.9
weight_decay = 0.256
weight_decay_bias = 0.004
ema_update_freq = 5
ema_rho = 0.99**ema_update_freq
2024-11-23 22:37:07 -07:00
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if device.type != "cpu" else torch.float32
2024-11-23 23:19:01 -07:00
# First, the learning rate rises from 0 to 0.002 for the first 194 batches.
# Next, the learning rate shrinks down to 0.0002 over the next 582 batches.
lr_schedule = torch.cat(
[
torch.linspace(0e0, 2e-3, 194),
torch.linspace(2e-3, 2e-4, 582),
]
)
2024-11-23 22:37:07 -07:00
2024-11-23 23:19:01 -07:00
lr_schedule_bias = 64.0 * lr_schedule
torch.backends.cudnn.benchmark = True
weights = model.patch_whitening(train_data[:10000, :, 4:-4, 4:-4])
train_model = model.Model(weights, c_in=3, c_out=10, scale_out=0.125)
train_model.to(dtype)
for module in train_model.modules():
if isinstance(module, nn.BatchNorm2d):
module.float()
train_model.to(device)
# Collect weights and biases and create nesterov velocity values
weights = [
(w, torch.zeros_like(w))
for w in train_model.parameters()
if w.requires_grad and len(w.shape) > 1
]
biases = [
(w, torch.zeros_like(w))
for w in train_model.parameters()
if w.requires_grad and len(w.shape) <= 1
]
batch_count = 0
# Randomly sample half the data per model
nb_rows = train_data.shape[0]
indices = torch.randperm(nb_rows)[: nb_rows // 2]
indices_in = indices[: nb_rows // 2]
train_data = train_data[indices_in]
train_targets = train_targets[indices_in]
for epoch in range(1, epochs + 1):
# Flush CUDA pipeline for more accurate time measurement
if torch.cuda.is_available():
torch.cuda.synchronize()
start_time = time.perf_counter()
# Randomly shuffle training data
indices = torch.randperm(len(train_data), device=device)
data = train_data[indices]
targets = train_targets[indices]
# Crop random 32x32 patches from 40x40 training data
data = [
random_crop(data[i : i + batch_size], crop_size=(32, 32))
for i in range(0, len(data), batch_size)
]
data = torch.cat(data)
# Randomly flip half the training data
data[: len(data) // 2] = torch.flip(data[: len(data) // 2], [-1])
for i in range(0, len(data), batch_size):
# discard partial batches
if i + batch_size > len(data):
break
# Slice batch from data
inputs = data[i : i + batch_size]
target = targets[i : i + batch_size]
batch_count += 1
# Compute new gradients
train_model.zero_grad()
train_model.train(True)
logits = train_model(inputs)
loss = model.label_smoothing_loss(logits, target, alpha=0.2)
loss.sum().backward()
lr_index = min(batch_count, len(lr_schedule) - 1)
lr = lr_schedule[lr_index]
lr_bias = lr_schedule_bias[lr_index]
# Update weights and biases of training model
update_nesterov(weights, lr, weight_decay, momentum)
update_nesterov(biases, lr_bias, weight_decay_bias, momentum)
torch.save(train_model.state_dict(), shadow_path)
2024-11-23 22:37:07 -07:00
2024-11-20 12:11:10 -07:00
def preprocess_data(data, device, dtype):
# Convert to torch float16 tensor
data = torch.tensor(data, device=device).to(dtype)
# Normalize
mean = torch.tensor([125.31, 122.95, 113.87], device=device).to(dtype)
std = torch.tensor([62.99, 62.09, 66.70], device=device).to(dtype)
data = (data - mean) / std
# Permute data from NHWC to NCHW format
data = data.permute(0, 3, 1, 2)
return data
def load_cifar10(device, dtype, data_dir="~/data"):
train = torchvision.datasets.CIFAR10(root=data_dir, download=True)
valid = torchvision.datasets.CIFAR10(root=data_dir, train=False)
train_data = preprocess_data(train.data, device, dtype)
valid_data = preprocess_data(valid.data, device, dtype)
train_targets = torch.tensor(train.targets).to(device)
valid_targets = torch.tensor(valid.targets).to(device)
# Pad 32x32 to 40x40
train_data = nn.ReflectionPad2d(4)(train_data)
return train_data, train_targets, valid_data, valid_targets
def update_nesterov(weights, lr, weight_decay, momentum):
for weight, velocity in weights:
if weight.requires_grad:
gradient = weight.grad.data
weight = weight.data
gradient.add_(weight, alpha=weight_decay).mul_(-lr)
velocity.mul_(momentum).add_(gradient)
weight.add_(gradient.add_(velocity, alpha=momentum))
def random_crop(data, crop_size):
crop_h, crop_w = crop_size
h = data.size(2)
w = data.size(3)
x = torch.randint(w - crop_w, size=(1,))[0]
y = torch.randint(h - crop_h, size=(1,))[0]
return data[:, :, y : y + crop_h, x : x + crop_w]
def sha256(path):
import hashlib
2024-11-23 22:37:07 -07:00
2024-11-20 12:11:10 -07:00
with open(path, "rb") as f:
return hashlib.sha256(f.read()).hexdigest()
def getrelpath(abspath):
import os
2024-11-23 22:37:07 -07:00
2024-11-20 12:11:10 -07:00
return os.path.relpath(abspath, os.getcwd())
def print_info():
# Knowing this information might improve chance of reproducability
print("File :", getrelpath(__file__), sha256(__file__))
print("Model :", getrelpath(model.__file__), sha256(model.__file__))
print("PyTorch:", torch.__version__)
def main():
print_info()
2024-11-23 23:19:01 -07:00
batch_size = 512
shadow_path = "shadow.pt"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if device.type != "cpu" else torch.float32
train_data, train_targets, valid_data, valid_targets = load_cifar10(device, dtype)
2024-11-20 12:11:10 -07:00
2024-11-23 23:32:39 -07:00
train_shadow(shadow_path, train_data, train_targets, batch_size)
2024-11-23 23:19:01 -07:00
run_shadow_model(shadow_path, device, dtype, train_data, train_targets, batch_size)
run_shadow_model(shadow_path, device, dtype, valid_data, valid_targets, batch_size)
2024-11-20 12:11:10 -07:00
2024-11-23 23:32:39 -07:00
2024-11-20 12:11:10 -07:00
if __name__ == "__main__":
main()