2024-12-02 23:48:50 -07:00
|
|
|
import argparse
|
|
|
|
import equations
|
|
|
|
import numpy as np
|
|
|
|
import time
|
2024-12-03 19:43:05 -07:00
|
|
|
import copy
|
2024-12-02 23:48:50 -07:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from torch import optim
|
|
|
|
from torch.optim.lr_scheduler import MultiStepLR
|
2024-12-03 16:53:33 -07:00
|
|
|
from torch.utils.data import DataLoader, Subset, TensorDataset
|
2024-12-02 23:48:50 -07:00
|
|
|
import torch.nn.functional as F
|
|
|
|
from pathlib import Path
|
|
|
|
from torchvision import transforms
|
|
|
|
from torchvision.datasets import CIFAR10
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
import opacus
|
|
|
|
from opacus.validators import ModuleValidator
|
|
|
|
from opacus.utils.batch_memory_manager import BatchMemoryManager
|
|
|
|
from WideResNet import WideResNet
|
|
|
|
import warnings
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
|
2024-12-03 13:01:38 -07:00
|
|
|
DEVICE = None
|
2024-12-02 23:48:50 -07:00
|
|
|
|
|
|
|
|
|
|
|
def get_dataloaders(m=1000, train_batch_size=128, test_batch_size=10):
|
|
|
|
seed = np.random.randint(0, 1e9)
|
|
|
|
seed ^= int(time.time())
|
|
|
|
pl.seed_everything(seed)
|
|
|
|
|
|
|
|
train_transform = transforms.Compose([
|
|
|
|
transforms.ToTensor(),
|
|
|
|
transforms.Lambda(lambda x: F.pad(x.unsqueeze(0),
|
|
|
|
(4, 4, 4, 4), mode='reflect').squeeze()),
|
|
|
|
transforms.ToPILImage(),
|
|
|
|
transforms.RandomCrop(32),
|
|
|
|
transforms.RandomHorizontalFlip(),
|
|
|
|
transforms.ToTensor(),
|
|
|
|
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
|
|
|
])
|
|
|
|
test_transform = transforms.Compose([
|
|
|
|
transforms.ToTensor(),
|
|
|
|
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
|
|
|
])
|
|
|
|
datadir = Path("./data")
|
|
|
|
train_ds = CIFAR10(root=datadir, train=True, download=True, transform=train_transform)
|
|
|
|
test_ds = CIFAR10(root=datadir, train=False, download=True, transform=test_transform)
|
|
|
|
|
2024-12-03 22:35:41 -07:00
|
|
|
# Original dataset
|
|
|
|
x = np.stack(train_ds[i][0].numpy() for i in range(len(train_ds))) # Applies transforms
|
2024-12-03 23:02:55 -07:00
|
|
|
p = np.random.permutation(len(train_ds))
|
2024-12-03 22:35:41 -07:00
|
|
|
|
|
|
|
# Choose m points to randomly exclude at chance
|
2024-12-03 13:01:38 -07:00
|
|
|
S = np.full(len(train_ds), True)
|
|
|
|
S[:m] = np.random.choice([True, False], size=m) # Vector of determining if each point is in or out
|
|
|
|
|
2024-12-03 22:35:41 -07:00
|
|
|
# Store the m points which could have been included/excluded
|
|
|
|
mask = np.full(len(train_ds), False)
|
|
|
|
mask[:m] = True
|
|
|
|
mask = mask[p]
|
|
|
|
|
|
|
|
x_m = x[mask] # These are the points being guessed at
|
|
|
|
y_m = np.array(train_ds.targets)[mask].astype(np.int64)
|
2024-12-03 23:02:55 -07:00
|
|
|
S_m = S[p][mask] # Ground truth of inclusion/exclusion for x_m
|
2024-12-03 22:35:41 -07:00
|
|
|
|
|
|
|
# Remove excluded points from dataset
|
|
|
|
x_in = x[S[p]]
|
2024-12-03 16:53:33 -07:00
|
|
|
y_in = np.array(train_ds.targets).astype(np.int64)
|
|
|
|
y_in = y_in[S[p]]
|
2024-12-03 13:01:38 -07:00
|
|
|
|
2024-12-03 16:53:33 -07:00
|
|
|
td = TensorDataset(torch.from_numpy(x_in), torch.from_numpy(y_in).long())
|
|
|
|
train_dl = DataLoader(td, batch_size=train_batch_size, shuffle=True, num_workers=4)
|
2024-12-02 23:48:50 -07:00
|
|
|
test_dl = DataLoader(test_ds, batch_size=test_batch_size, shuffle=True, num_workers=4)
|
|
|
|
|
2024-12-03 23:02:55 -07:00
|
|
|
return train_dl, test_dl, x_in, x_m, y_m, S_m
|
2024-12-02 23:48:50 -07:00
|
|
|
|
|
|
|
|
2024-12-03 19:43:05 -07:00
|
|
|
def evaluate_on(model, dataloader):
|
|
|
|
correct = 0
|
|
|
|
total = 0
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
for data in dataloader:
|
|
|
|
images, labels = data
|
|
|
|
images = images.to(DEVICE)
|
|
|
|
labels = labels.to(DEVICE)
|
|
|
|
|
|
|
|
wrn_outputs = model(images)
|
|
|
|
outputs = wrn_outputs[0]
|
|
|
|
_, predicted = torch.max(outputs.data, 1)
|
|
|
|
total += labels.size(0)
|
|
|
|
correct += (predicted == labels).sum().item()
|
|
|
|
|
|
|
|
return correct, total
|
|
|
|
|
|
|
|
|
|
|
|
def train_no_cap(model, hp, train_dl, test_dl, optimizer, criterion, scheduler):
|
2024-12-02 23:48:50 -07:00
|
|
|
best_test_set_accuracy = 0
|
|
|
|
|
|
|
|
for epoch in range(hp['epochs']):
|
|
|
|
model.train()
|
2024-12-03 19:43:05 -07:00
|
|
|
for i, data in enumerate(train_dl, 0):
|
2024-12-02 23:48:50 -07:00
|
|
|
inputs, labels = data
|
|
|
|
inputs = inputs.to(DEVICE)
|
|
|
|
labels = labels.to(DEVICE)
|
|
|
|
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
|
|
|
wrn_outputs = model(inputs)
|
|
|
|
outputs = wrn_outputs[0]
|
|
|
|
loss = criterion(outputs, labels)
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
scheduler.step()
|
|
|
|
|
2024-12-03 16:53:33 -07:00
|
|
|
if epoch % 10 == 0 or epoch == hp['epochs'] - 1:
|
2024-12-03 19:43:05 -07:00
|
|
|
correct, total = evaluate_on(model, test_dl)
|
|
|
|
epoch_accuracy = round(100 * correct / total, 2)
|
|
|
|
print(f"Epoch {epoch+1}/{hp['epochs']}: {epoch_accuracy}%")
|
2024-12-02 23:48:50 -07:00
|
|
|
|
|
|
|
return best_test_set_accuracy
|
|
|
|
|
|
|
|
|
2024-12-03 19:43:05 -07:00
|
|
|
def train(hp, train_dl, test_dl):
|
2024-12-02 23:48:50 -07:00
|
|
|
model = WideResNet(
|
|
|
|
d=hp["wrn_depth"],
|
|
|
|
k=hp["wrn_width"],
|
|
|
|
n_classes=10,
|
|
|
|
input_features=3,
|
|
|
|
output_features=16,
|
|
|
|
strides=[1, 1, 2, 2],
|
|
|
|
)
|
2024-12-03 13:01:38 -07:00
|
|
|
model = model.to(DEVICE)
|
2024-12-02 23:48:50 -07:00
|
|
|
model = ModuleValidator.fix(model)
|
|
|
|
ModuleValidator.validate(model, strict=True)
|
|
|
|
|
2024-12-03 19:43:05 -07:00
|
|
|
model_init = copy.deepcopy(model)
|
|
|
|
|
2024-12-02 23:48:50 -07:00
|
|
|
criterion = nn.CrossEntropyLoss()
|
|
|
|
optimizer = optim.SGD(
|
|
|
|
model.parameters(),
|
|
|
|
lr=0.1,
|
|
|
|
momentum=0.9,
|
|
|
|
nesterov=True,
|
|
|
|
weight_decay=5e-4
|
|
|
|
)
|
|
|
|
scheduler = MultiStepLR(
|
|
|
|
optimizer,
|
|
|
|
milestones=[int(i * hp['epochs']) for i in [0.3, 0.6, 0.8]],
|
|
|
|
gamma=0.2
|
|
|
|
)
|
|
|
|
|
|
|
|
print(f"Training with {hp['epochs']} epochs")
|
|
|
|
|
|
|
|
if hp['epsilon'] is not None:
|
|
|
|
privacy_engine = opacus.PrivacyEngine()
|
|
|
|
model, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
|
|
|
|
module=model,
|
|
|
|
optimizer=optimizer,
|
|
|
|
data_loader=train_dl,
|
|
|
|
epochs=hp['epochs'],
|
|
|
|
target_epsilon=hp['epsilon'],
|
|
|
|
target_delta=hp['delta'],
|
|
|
|
max_grad_norm=hp['norm'],
|
|
|
|
)
|
|
|
|
|
|
|
|
print(f"DP epsilon = {hp['epsilon']}, delta = {hp['delta']}")
|
|
|
|
print(f"Using sigma={optimizer.noise_multiplier} and C = norm = {hp['norm']}")
|
|
|
|
|
|
|
|
with BatchMemoryManager(
|
|
|
|
data_loader=train_loader,
|
2024-12-03 13:01:38 -07:00
|
|
|
max_physical_batch_size=2000, # 1000 ~= 9.4GB vram
|
2024-12-02 23:48:50 -07:00
|
|
|
optimizer=optimizer
|
|
|
|
) as memory_safe_data_loader:
|
|
|
|
best_test_set_accuracy = train_no_cap(
|
|
|
|
model,
|
|
|
|
hp,
|
2024-12-03 13:01:38 -07:00
|
|
|
memory_safe_data_loader,
|
2024-12-02 23:48:50 -07:00
|
|
|
test_dl,
|
|
|
|
optimizer,
|
|
|
|
criterion,
|
|
|
|
scheduler,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
print("Training without differential privacy")
|
|
|
|
best_test_set_accuracy = train_no_cap(
|
|
|
|
model,
|
|
|
|
hp,
|
|
|
|
train_dl,
|
|
|
|
test_dl,
|
|
|
|
optimizer,
|
|
|
|
criterion,
|
|
|
|
scheduler,
|
|
|
|
)
|
|
|
|
|
2024-12-03 19:43:05 -07:00
|
|
|
return model_init, model
|
2024-12-02 23:48:50 -07:00
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
global DEVICE
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='WideResNet O1 audit')
|
|
|
|
parser.add_argument('--norm', type=float, help='dpsgd norm clip factor', required=True)
|
|
|
|
parser.add_argument('--cuda', type=int, help='gpu index', required=False)
|
|
|
|
parser.add_argument('--epsilon', type=float, help='dp epsilon', required=False, default=None)
|
2024-12-03 16:53:33 -07:00
|
|
|
parser.add_argument('--m', type=int, help='number of target points', required=True)
|
2024-12-02 23:48:50 -07:00
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
if torch.cuda.is_available() and args.cuda:
|
|
|
|
DEVICE = torch.device(f'cuda:{args.cuda}')
|
|
|
|
elif torch.cuda.is_available():
|
|
|
|
DEVICE = torch.device('cuda:0')
|
|
|
|
else:
|
|
|
|
DEVICE = torch.device('cpu')
|
|
|
|
|
2024-12-03 19:43:05 -07:00
|
|
|
hp = {
|
2024-12-03 16:53:33 -07:00
|
|
|
"target_points": args.m,
|
2024-12-02 23:48:50 -07:00
|
|
|
"wrn_depth": 16,
|
|
|
|
"wrn_width": 1,
|
|
|
|
"epsilon": args.epsilon,
|
|
|
|
"delta": 1e-5,
|
|
|
|
"norm": args.norm,
|
|
|
|
"batch_size": 4096,
|
2024-12-03 23:02:55 -07:00
|
|
|
"epochs": 2,
|
|
|
|
"k+": 300,
|
|
|
|
"k-": 300,
|
2024-12-02 23:48:50 -07:00
|
|
|
}
|
|
|
|
|
2024-12-03 19:43:05 -07:00
|
|
|
hp['logfile'] = Path('WideResNet_{}_{}_{}_{}s_x{}_{}e_{}d_{}C.txt'.format(
|
2024-12-02 23:48:50 -07:00
|
|
|
int(time.time()),
|
2024-12-03 19:43:05 -07:00
|
|
|
hp['wrn_depth'],
|
|
|
|
hp['wrn_width'],
|
|
|
|
hp['batch_size'],
|
|
|
|
hp['epochs'],
|
|
|
|
hp['epsilon'],
|
|
|
|
hp['delta'],
|
|
|
|
hp['norm'],
|
2024-12-02 23:48:50 -07:00
|
|
|
))
|
|
|
|
|
2024-12-03 23:02:55 -07:00
|
|
|
train_dl, test_dl, x_in, x_m, y_m, S_m = get_dataloaders(hp['target_points'], hp['batch_size'])
|
2024-12-03 22:35:41 -07:00
|
|
|
print(f"len train: {len(train_dl)}")
|
2024-12-03 23:02:55 -07:00
|
|
|
print(f"Got vector Sm: {S_m.shape}, sum={np.sum(S_m)}")
|
2024-12-03 19:43:05 -07:00
|
|
|
print(f"Got x_in: {x_in.shape}")
|
2024-12-03 22:35:41 -07:00
|
|
|
print(f"Got x_m: {x_m.shape}")
|
|
|
|
print(f"Got y_m: {y_m.shape}")
|
|
|
|
|
2024-12-03 19:43:05 -07:00
|
|
|
model_init, model_trained = train(hp, train_dl, test_dl)
|
|
|
|
|
2024-12-03 22:35:41 -07:00
|
|
|
# torch.save(model_init.state_dict(), "data/init_model.pt")
|
|
|
|
# torch.save(model_trained.state_dict(), "data/trained_model.pt")
|
|
|
|
|
|
|
|
scores = list()
|
|
|
|
criterion = nn.CrossEntropyLoss()
|
|
|
|
with torch.no_grad():
|
|
|
|
model_init.eval()
|
|
|
|
x_m = torch.from_numpy(x_m).to(DEVICE)
|
|
|
|
y_m = torch.from_numpy(y_m).long().to(DEVICE)
|
|
|
|
|
|
|
|
for i in range(len(x_m)):
|
|
|
|
x_point = x_m[i].unsqueeze(0)
|
|
|
|
y_point = y_m[i].unsqueeze(0)
|
2024-12-03 23:02:55 -07:00
|
|
|
is_in = S_m[i]
|
2024-12-03 22:35:41 -07:00
|
|
|
|
|
|
|
init_loss = criterion(model_init(x_point)[0], y_point)
|
|
|
|
trained_loss = criterion(model_trained(x_point)[0], y_point)
|
|
|
|
|
2024-12-03 23:02:55 -07:00
|
|
|
scores.append(((init_loss - trained_loss).item(), is_in))
|
|
|
|
|
|
|
|
scores = sorted(scores, key=lambda x: x[0])
|
|
|
|
scores = np.array([x[1] for x in scores])
|
2024-12-03 22:35:41 -07:00
|
|
|
|
|
|
|
print(scores[:10])
|
|
|
|
|
2024-12-03 23:02:55 -07:00
|
|
|
correct = np.sum(~scores[:hp['k-']]) + np.sum(scores[-hp['k+']:])
|
|
|
|
total = len(scores)
|
|
|
|
print(f"Audit total: {correct}/{total} = {round(correct/total*100, 2)}")
|
|
|
|
|
2024-12-03 19:43:05 -07:00
|
|
|
correct, total = evaluate_on(model_init, train_dl)
|
|
|
|
print(f"Init model accuracy: {correct}/{total} = {round(correct/total*100, 2)}")
|
|
|
|
correct, total = evaluate_on(model_trained, test_dl)
|
|
|
|
print(f"Done model accuracy: {correct}/{total} = {round(correct/total*100, 2)}")
|
|
|
|
|
2024-12-02 23:48:50 -07:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|