O1: return target point labels

This commit is contained in:
Akemi Izuko 2024-12-03 22:35:41 -07:00
parent d606245ad1
commit 4692502763
Signed by: akemi
GPG key ID: 8DE0764E1809E9FC

View file

@ -47,24 +47,32 @@ def get_dataloaders(m=1000, train_batch_size=128, test_batch_size=10):
train_ds = CIFAR10(root=datadir, train=True, download=True, transform=train_transform) train_ds = CIFAR10(root=datadir, train=True, download=True, transform=train_transform)
test_ds = CIFAR10(root=datadir, train=False, download=True, transform=test_transform) test_ds = CIFAR10(root=datadir, train=False, download=True, transform=test_transform)
# Original dataset
x = np.stack(train_ds[i][0].numpy() for i in range(len(train_ds))) # Applies transforms
# Choose m points to randomly exclude at chance
S = np.full(len(train_ds), True) S = np.full(len(train_ds), True)
S[:m] = np.random.choice([True, False], size=m) # Vector of determining if each point is in or out S[:m] = np.random.choice([True, False], size=m) # Vector of determining if each point is in or out
p = np.random.permutation(len(train_ds)) p = np.random.permutation(len(train_ds))
x_in = np.stack(train_ds[i][0].numpy() for i in range(len(train_ds))) # Applies transforms # Store the m points which could have been included/excluded
x_in = x_in[S[p]] mask = np.full(len(train_ds), False)
mask[:m] = True
mask = mask[p]
x_m = x[mask] # These are the points being guessed at
y_m = np.array(train_ds.targets)[mask].astype(np.int64)
# Remove excluded points from dataset
x_in = x[S[p]]
y_in = np.array(train_ds.targets).astype(np.int64) y_in = np.array(train_ds.targets).astype(np.int64)
y_in = y_in[S[p]] y_in = y_in[S[p]]
x_m = np.full(len(train_ds), False)
x_m[:m] = True
x_m = x_m[p] # These are the points being guessed at
td = TensorDataset(torch.from_numpy(x_in), torch.from_numpy(y_in).long()) td = TensorDataset(torch.from_numpy(x_in), torch.from_numpy(y_in).long())
train_dl = DataLoader(td, batch_size=train_batch_size, shuffle=True, num_workers=4) train_dl = DataLoader(td, batch_size=train_batch_size, shuffle=True, num_workers=4)
test_dl = DataLoader(test_ds, batch_size=test_batch_size, shuffle=True, num_workers=4) test_dl = DataLoader(test_ds, batch_size=test_batch_size, shuffle=True, num_workers=4)
return train_dl, test_dl, x_in, x_m, S[p] return train_dl, test_dl, x_in, x_m, y_m, S[p]
def evaluate_on(model, dataloader): def evaluate_on(model, dataloader):
@ -230,20 +238,47 @@ def main():
hp['norm'], hp['norm'],
)) ))
train_dl, test_dl, x_in, x_m, S = get_dataloaders(hp['target_points'], hp['batch_size']) train_dl, test_dl, x_in, x_m, y_m, S = get_dataloaders(hp['target_points'], hp['batch_size'])
print(f"len train: {len(train_dl)}")
print(f"Got vector S: {S.shape}, sum={np.sum(S)}, S[:{hp['target_points']}] = {S[:8]}") print(f"Got vector S: {S.shape}, sum={np.sum(S)}, S[:{hp['target_points']}] = {S[:8]}")
print(f"Got x_in: {x_in.shape}") print(f"Got x_in: {x_in.shape}")
print(f"Got x_m: {x_m.shape}, sum={np.sum(S)}, x_m[:{hp['target_points']}] = {x_m[:8]}") print(f"Got x_m: {x_m.shape}")
print(f"S @ x_m: sum={np.sum(S[x_m])}, S[x_m][:{hp['target_points']}] = {S[x_m][:8]}") print(f"Got y_m: {y_m.shape}")
print(f"Got train dataloader: {len(train_dl)}")
for x, y in train_dl:
print(f"dl x shape: {x.shape}")
print(f"dl y shape: {y.shape}")
break
model_init, model_trained = train(hp, train_dl, test_dl) model_init, model_trained = train(hp, train_dl, test_dl)
# torch.save(model_init.state_dict(), "data/init_model.pt")
# torch.save(model_trained.state_dict(), "data/trained_model.pt")
scores = list()
criterion = nn.CrossEntropyLoss()
with torch.no_grad():
model_init.eval()
x_m = torch.from_numpy(x_m).to(DEVICE)
y_m = torch.from_numpy(y_m).long().to(DEVICE)
for i in range(len(x_m)):
x_point = x_m[i].unsqueeze(0)
y_point = y_m[i].unsqueeze(0)
init_loss = criterion(model_init(x_point)[0], y_point)
trained_loss = criterion(model_trained(x_point)[0], y_point)
scores.append(init_loss - trained_loss)
print(len(scores))
print(scores[:10])
correct, total = evaluate_on(model_init, train_dl) correct, total = evaluate_on(model_init, train_dl)
print(f"Init model accuracy: {correct}/{total} = {round(correct/total*100, 2)}") print(f"Init model accuracy: {correct}/{total} = {round(correct/total*100, 2)}")
correct, total = evaluate_on(model_trained, test_dl) correct, total = evaluate_on(model_trained, test_dl)
print(f"Done model accuracy: {correct}/{total} = {round(correct/total*100, 2)}") print(f"Done model accuracy: {correct}/{total} = {round(correct/total*100, 2)}")
torch.save(model_trained.state_dict(), hp['logfile'].with_suffix('.pt'))
if __name__ == '__main__': if __name__ == '__main__':
main() main()