Lira: train run shadow models

This commit is contained in:
Akemi Izuko 2024-11-23 23:19:01 -07:00
parent 91c61df0a8
commit bffecb459c
Signed by: akemi
GPG key ID: 8DE0764E1809E9FC

View file

@ -50,18 +50,124 @@ def eval_model(smodel, device, dtype, data, labels, batch_size):
return eval_acc return eval_acc
def run_shadow_model(): def run_shadow_model(shadow_path, device, dtype, data, labels, batch_size):
batch_size = 512 smodel = load_model(shadow_path, device, dtype, data)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") eval_acc = eval_model(smodel, device, dtype, data, labels, batch_size)
dtype = torch.float16 if device.type != "cpu" else torch.float32
train_data, train_targets, valid_data, valid_targets = load_cifar10(device, dtype)
smodel = load_model("shadow.pt", device, dtype, train_data)
eval_acc = eval_model(smodel, device, dtype, train_data, train_targets, batch_size)
print(f"Evaluation Accuracy: {eval_acc:.4f}") print(f"Evaluation Accuracy: {eval_acc:.4f}")
def train_shadow(shadow_path, train_data, train_targets, valid_data, valid_targets, batch_size):
# Configurable parameters
epochs = 10
momentum = 0.9
weight_decay = 0.256
weight_decay_bias = 0.004
ema_update_freq = 5
ema_rho = 0.99**ema_update_freq
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if device.type != "cpu" else torch.float32
# First, the learning rate rises from 0 to 0.002 for the first 194 batches.
# Next, the learning rate shrinks down to 0.0002 over the next 582 batches.
lr_schedule = torch.cat(
[
torch.linspace(0e0, 2e-3, 194),
torch.linspace(2e-3, 2e-4, 582),
]
)
lr_schedule_bias = 64.0 * lr_schedule
torch.backends.cudnn.benchmark = True
# train_data, train_targets, valid_data, valid_targets = load_cifar10(device, dtype)
weights = model.patch_whitening(train_data[:10000, :, 4:-4, 4:-4])
train_model = model.Model(weights, c_in=3, c_out=10, scale_out=0.125)
train_model.to(dtype)
for module in train_model.modules():
if isinstance(module, nn.BatchNorm2d):
module.float()
train_model.to(device)
# Collect weights and biases and create nesterov velocity values
weights = [
(w, torch.zeros_like(w))
for w in train_model.parameters()
if w.requires_grad and len(w.shape) > 1
]
biases = [
(w, torch.zeros_like(w))
for w in train_model.parameters()
if w.requires_grad and len(w.shape) <= 1
]
# Train and validate
batch_count = 0
# Randomly sample half the data per model
nb_rows = train_data.shape[0]
indices = torch.randperm(nb_rows)[: nb_rows // 2]
indices_in = indices[: nb_rows // 2]
train_data = train_data[indices_in]
train_targets = train_targets[indices_in]
for epoch in range(1, epochs + 1):
# Flush CUDA pipeline for more accurate time measurement
if torch.cuda.is_available():
torch.cuda.synchronize()
start_time = time.perf_counter()
# Randomly shuffle training data
indices = torch.randperm(len(train_data), device=device)
data = train_data[indices]
targets = train_targets[indices]
# Crop random 32x32 patches from 40x40 training data
data = [
random_crop(data[i : i + batch_size], crop_size=(32, 32))
for i in range(0, len(data), batch_size)
]
data = torch.cat(data)
# Randomly flip half the training data
data[: len(data) // 2] = torch.flip(data[: len(data) // 2], [-1])
for i in range(0, len(data), batch_size):
# discard partial batches
if i + batch_size > len(data):
break
# Slice batch from data
inputs = data[i : i + batch_size]
target = targets[i : i + batch_size]
batch_count += 1
# Compute new gradients
train_model.zero_grad()
train_model.train(True)
logits = train_model(inputs)
loss = model.label_smoothing_loss(logits, target, alpha=0.2)
loss.sum().backward()
lr_index = min(batch_count, len(lr_schedule) - 1)
lr = lr_schedule[lr_index]
lr_bias = lr_schedule_bias[lr_index]
# Update weights and biases of training model
update_nesterov(weights, lr, weight_decay, momentum)
update_nesterov(biases, lr_bias, weight_decay_bias, momentum)
torch.save(train_model.state_dict(), shadow_path)
def train(seed=0): def train(seed=0):
# Configurable parameters # Configurable parameters
epochs = 10 epochs = 10
@ -338,8 +444,15 @@ def main():
print(f"Max accuracy: {max(accuracies)}") print(f"Max accuracy: {max(accuracies)}")
print(f"Mean accuracy: {mean} +- {std}") print(f"Mean accuracy: {mean} +- {std}")
print() print()
batch_size = 512
shadow_path = "shadow.pt"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if device.type != "cpu" else torch.float32
train_data, train_targets, valid_data, valid_targets = load_cifar10(device, dtype)
run_shadow_model() train_shadow(shadow_path, train_data, train_targets, valid_data, valid_targets, batch_size)
run_shadow_model(shadow_path, device, dtype, train_data, train_targets, batch_size)
run_shadow_model(shadow_path, device, dtype, valid_data, valid_targets, batch_size)
if __name__ == "__main__": if __name__ == "__main__":
main() main()