Compare commits

...

20 commits

Author SHA1 Message Date
ad666283c5
Wres: clean up student a bit 2024-12-02 18:45:13 -07:00
ARVP
524576db31 fixed to use student model 2024-12-02 17:58:01 -07:00
e3ccfbcf76
Wres: args for students 2024-12-02 17:31:11 -07:00
Ruby
5be312bf18 changed to same data loaders as train.py and added saving student model 2024-12-01 15:33:03 -07:00
7208c16efc
Wres: epsilon in args 2024-12-01 14:49:13 -07:00
aa190cd4f1
Wres: toggle non-dp training 2024-12-01 13:58:50 -07:00
0eb26f8979
Wres: add distillation code 2024-12-01 13:38:32 -07:00
424cb01a15
Wres: cuda and norm flags 2024-11-30 23:54:48 -07:00
e4b5998dbb
Wres: dp training 2024-11-30 20:28:25 -07:00
c1561c7d55
Wres: wresnet with audit settings 2024-11-30 15:41:11 -07:00
c163e3062c
Torchlira: cite repositories 2024-11-30 13:36:40 -07:00
944ff9d5cd
Torchlira: add wresnet-16 2024-11-30 13:35:38 -07:00
2b865a5f58
Torchlira: add additional networks 2024-11-30 13:34:05 -07:00
1b099f4dad
Torchlira: attempt microbatch 2024-11-29 19:43:38 -07:00
c7eee3cdc2
Torchlira: remove secure mode 2024-11-29 18:30:26 -07:00
fe7fcb2761
Torchlira: update gitignore 2024-11-29 17:39:44 -07:00
e95444fa74
Pytorch version of lira 2024-11-29 17:16:09 -07:00
3467c25882
Lira: remove deadcode 2024-11-23 23:32:39 -07:00
bffecb459c
Lira: train run shadow models 2024-11-23 23:19:01 -07:00
91c61df0a8
Lira: save load shadow models 2024-11-23 22:37:07 -07:00
32 changed files with 2082 additions and 114 deletions

View file

@ -1,6 +1,8 @@
## Sources
- [cifar10-fast-simple](https://github.com/99991/cifar10-fast-simple)
- [lira-pytorch](https://github.com/orientino/lira-pytorch)
- [wresnet-pytorch](https://github.com/AlexandrosFerles/Wide-Residual-Networks-PyTorch)
## Setup

View file

@ -6,52 +6,10 @@ import torchvision
import model
def train(seed=0):
# Configurable parameters
epochs = 10
batch_size = 512
momentum = 0.9
weight_decay = 0.256
weight_decay_bias = 0.004
ema_update_freq = 5
ema_rho = 0.99 ** ema_update_freq
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if device.type != "cpu" else torch.float32
# First, the learning rate rises from 0 to 0.002 for the first 194 batches.
# Next, the learning rate shrinks down to 0.0002 over the next 582 batches.
lr_schedule = torch.cat([
torch.linspace(0e+0, 2e-3, 194),
torch.linspace(2e-3, 2e-4, 582),
])
lr_schedule_bias = 64.0 * lr_schedule
# Print information about hardware on first run
if seed == 0:
if device.type == "cuda":
print("Device :", torch.cuda.get_device_name(device.index))
print("Dtype :", dtype)
print()
# Start measuring time
start_time = time.perf_counter()
# Set random seed to increase chance of reproducability
torch.manual_seed(seed)
# Setting cudnn.benchmark to True hampers reproducability, but is faster
torch.backends.cudnn.benchmark = True
# Load dataset
train_data, train_targets, valid_data, valid_targets = load_cifar10(device, dtype)
# Compute special weights for first layer
def load_model(model_path, device, dtype, train_data):
weights = model.patch_whitening(train_data[:10000, :, 4:-4, 4:-4])
# Construct the neural network
train_model = model.Model(weights, c_in=3, c_out=10, scale_out=0.125)
train_model.load_state_dict(torch.load(model_path, weights_only=True))
# Convert model weights to half precision
train_model.to(dtype)
@ -64,6 +22,75 @@ def train(seed=0):
# Upload model to GPU
train_model.to(device)
return train_model
def eval_model(smodel, device, dtype, data, labels, batch_size):
smodel.eval()
eval_correct = []
with torch.no_grad():
for i in range(0, len(data), batch_size):
regular_inputs = data[i : i + batch_size].to(device, dtype)
flipped_inputs = torch.flip(regular_inputs, [-1])
logits1 = smodel(regular_inputs)
logits2 = smodel(flipped_inputs)
# Final logits are average of augmented logits
logits = torch.mean(torch.stack([logits1, logits2], dim=0), dim=0)
# Compute correct predictions
correct = logits.max(dim=1)[1] == labels[i : i + batch_size].to(device)
eval_correct.append(correct.detach().type(torch.float64))
# Accuracy is average number of correct predictions
eval_acc = torch.mean(torch.cat(eval_correct)).item()
return eval_acc
def run_shadow_model(shadow_path, device, dtype, data, labels, batch_size):
smodel = load_model(shadow_path, device, dtype, data)
eval_acc = eval_model(smodel, device, dtype, data, labels, batch_size)
print(f"Evaluation Accuracy: {eval_acc:.4f}")
def train_shadow(shadow_path, train_data, train_targets, batch_size):
# Configurable parameters
epochs = 10
momentum = 0.9
weight_decay = 0.256
weight_decay_bias = 0.004
ema_update_freq = 5
ema_rho = 0.99**ema_update_freq
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if device.type != "cpu" else torch.float32
# First, the learning rate rises from 0 to 0.002 for the first 194 batches.
# Next, the learning rate shrinks down to 0.0002 over the next 582 batches.
lr_schedule = torch.cat(
[
torch.linspace(0e0, 2e-3, 194),
torch.linspace(2e-3, 2e-4, 582),
]
)
lr_schedule_bias = 64.0 * lr_schedule
torch.backends.cudnn.benchmark = True
weights = model.patch_whitening(train_data[:10000, :, 4:-4, 4:-4])
train_model = model.Model(weights, c_in=3, c_out=10, scale_out=0.125)
train_model.to(dtype)
for module in train_model.modules():
if isinstance(module, nn.BatchNorm2d):
module.float()
train_model.to(device)
# Collect weights and biases and create nesterov velocity values
weights = [
(w, torch.zeros_like(w))
@ -76,15 +103,15 @@ def train(seed=0):
if w.requires_grad and len(w.shape) <= 1
]
# Copy the model for validation
valid_model = copy.deepcopy(train_model)
print(f"Preprocessing: {time.perf_counter() - start_time:.2f} seconds")
# Train and validate
print("\nepoch batch train time [sec] validation accuracy")
train_time = 0.0
batch_count = 0
# Randomly sample half the data per model
nb_rows = train_data.shape[0]
indices = torch.randperm(nb_rows)[: nb_rows // 2]
indices_in = indices[: nb_rows // 2]
train_data = train_data[indices_in]
train_targets = train_targets[indices_in]
for epoch in range(1, epochs + 1):
# Flush CUDA pipeline for more accurate time measurement
if torch.cuda.is_available():
@ -135,41 +162,8 @@ def train(seed=0):
update_nesterov(weights, lr, weight_decay, momentum)
update_nesterov(biases, lr_bias, weight_decay_bias, momentum)
# Update validation model with exponential moving averages
if (i // batch_size % ema_update_freq) == 0:
update_ema(train_model, valid_model, ema_rho)
torch.save(train_model.state_dict(), shadow_path)
if torch.cuda.is_available():
torch.cuda.synchronize()
# Add training time
train_time += time.perf_counter() - start_time
valid_correct = []
for i in range(0, len(valid_data), batch_size):
valid_model.train(False)
# Test time agumentation: Test model on regular and flipped data
regular_inputs = valid_data[i : i + batch_size]
flipped_inputs = torch.flip(regular_inputs, [-1])
logits1 = valid_model(regular_inputs).detach()
logits2 = valid_model(flipped_inputs).detach()
# Final logits are average of augmented logits
logits = torch.mean(torch.stack([logits1, logits2], dim=0), dim=0)
# Compute correct predictions
correct = logits.max(dim=1)[1] == valid_targets[i : i + batch_size]
valid_correct.append(correct.detach().type(torch.float64))
# Accuracy is average number of correct predictions
valid_acc = torch.mean(torch.cat(valid_correct)).item()
print(f"{epoch:5} {batch_count:8d} {train_time:19.2f} {valid_acc:22.4f}")
return valid_acc
def preprocess_data(data, device, dtype):
# Convert to torch float16 tensor
@ -202,17 +196,6 @@ def load_cifar10(device, dtype, data_dir="~/data"):
return train_data, train_targets, valid_data, valid_targets
def update_ema(train_model, valid_model, rho):
# The trained model is not used for validation directly. Instead, the
# validation model weights are updated with exponential moving averages.
train_weights = train_model.state_dict().values()
valid_weights = valid_model.state_dict().values()
for train_weight, valid_weight in zip(train_weights, valid_weights):
if valid_weight.dtype in [torch.float16, torch.float32]:
valid_weight *= rho
valid_weight += (1 - rho) * train_weight
def update_nesterov(weights, lr, weight_decay, momentum):
for weight, velocity in weights:
if weight.requires_grad:
@ -235,12 +218,14 @@ def random_crop(data, crop_size):
def sha256(path):
import hashlib
with open(path, "rb") as f:
return hashlib.sha256(f.read()).hexdigest()
def getrelpath(abspath):
import os
return os.path.relpath(abspath, os.getcwd())
@ -254,24 +239,15 @@ def print_info():
def main():
print_info()
accuracies = []
threshold = 0.94
for run in range(100):
valid_acc = train(seed=run)
accuracies.append(valid_acc)
batch_size = 512
shadow_path = "shadow.pt"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if device.type != "cpu" else torch.float32
train_data, train_targets, valid_data, valid_targets = load_cifar10(device, dtype)
# Print accumulated results
within_threshold = sum(acc >= threshold for acc in accuracies)
acc = threshold * 100.0
print()
print(f"{within_threshold} of {run + 1} runs >= {acc} % accuracy")
mean = sum(accuracies) / len(accuracies)
variance = sum((acc - mean)**2 for acc in accuracies) / len(accuracies)
std = variance**0.5
print(f"Min accuracy: {min(accuracies)}")
print(f"Max accuracy: {max(accuracies)}")
print(f"Mean accuracy: {mean} +- {std}")
print()
train_shadow(shadow_path, train_data, train_targets, batch_size)
run_shadow_model(shadow_path, device, dtype, train_data, train_targets, batch_size)
run_shadow_model(shadow_path, device, dtype, valid_data, valid_targets, batch_size)
if __name__ == "__main__":

8
lira-pytorch/.gitignore vendored Normal file
View file

@ -0,0 +1,8 @@
__pycache__
exp
logs
slurm
gpu.sh
*.out
.psyncup.json

202
lira-pytorch/LICENSE Normal file
View file

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

42
lira-pytorch/README.md Normal file
View file

@ -0,0 +1,42 @@
# Likelihood Ration Attack (LiRA) in PyTorch
Implementation of the original [LiRA](https://github.com/tensorflow/privacy/tree/master/research/mi_lira_2021) using PyTorch. To run the code, first create an environment with the `env.yml` file. Then run the following command to train the models and run the LiRA attack:
```
./run.sh
```
The output will generate and store a log-scale FPR-TPR curve as `./fprtpr.png` with the TPR@0.1%FPR in the output log.
## Results on CIFAR10
Using 16 shadow models trained with `ResNet18 and 2 augmented queries`:
![roc](figures/fprtpr_resnet18.png)
```
Attack Ours (online)
AUC 0.6548, Accuracy 0.6015, TPR@0.1%FPR of 0.0068
Attack Ours (online, fixed variance)
AUC 0.6700, Accuracy 0.6042, TPR@0.1%FPR of 0.0464
Attack Ours (offline)
AUC 0.5250, Accuracy 0.5353, TPR@0.1%FPR of 0.0041
Attack Ours (offline, fixed variance)
AUC 0.5270, Accuracy 0.5380, TPR@0.1%FPR of 0.0192
Attack Global threshold
AUC 0.5948, Accuracy 0.5869, TPR@0.1%FPR of 0.0006
```
Using 16 shadow models trained with `WideResNet28-10 and 2 augmented queries`:
![roc](figures/fprtpr_wideresnet.png)
```
Attack Ours (online)
AUC 0.6834, Accuracy 0.6152, TPR@0.1%FPR of 0.0240
Attack Ours (online, fixed variance)
AUC 0.7017, Accuracy 0.6240, TPR@0.1%FPR of 0.0704
Attack Ours (offline)
AUC 0.5621, Accuracy 0.5649, TPR@0.1%FPR of 0.0140
Attack Ours (offline, fixed variance)
AUC 0.5698, Accuracy 0.5628, TPR@0.1%FPR of 0.0370
Attack Global threshold
AUC 0.6016, Accuracy 0.5977, TPR@0.1%FPR of 0.0013
```

35
lira-pytorch/env.yml Normal file
View file

@ -0,0 +1,35 @@
# Minimal environment for starting a project using conda/mamba:
# conda env create -n ENVNAME --file ENV.yml
name: template
channels:
- pytorch
- nvidia
- conda-forge
- defaults
dependencies:
- python=3.8.6
- pip
- pytest
- numpy
- scipy
- scikit-learn
- matplotlib
- pandas
- tqdm
- wandb
- jupyterlab
- jupyter
- ipykernel
- pytorch
- torchvision
- torchaudio
- pytorch-cuda=12.1
- tqdm
- pytorch-lightning
- lightning-bolts
- torchmetrics
# Install packages with pip
# - pip:
# - ray[tune]

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

58
lira-pytorch/inference.py Normal file
View file

@ -0,0 +1,58 @@
# PyTorch implementation of
# https://github.com/tensorflow/privacy/blob/master/research/mi_lira_2021/inference.py
#
# author: Chenxiang Zhang (orientino)
import argparse
import os
from pathlib import Path
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import models, transforms
from torchvision.datasets import CIFAR10
from tqdm import tqdm
import student_model
from utils import json_file_to_pyobj, get_loaders
parser = argparse.ArgumentParser()
parser.add_argument("--n_queries", default=2, type=int)
parser.add_argument("--model", default="resnet18", type=str)
parser.add_argument("--savedir", default="exp/cifar10", type=str)
args = parser.parse_args()
@torch.no_grad()
def run():
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("mps")
dataset = "cifar10"
# Dataset
train_dl, test_dl = get_loaders(dataset, 4096)
# Infer the logits with multiple queries
for path in os.listdir(args.savedir):
m = student_model.Model(num_classes=10)
m.load_state_dict(torch.load(os.path.join(args.savedir, path, "model.pt")))
m.to(DEVICE)
m.eval()
logits_n = []
for i in range(args.n_queries):
logits = []
for x, _ in tqdm(train_dl):
x = x.to(DEVICE)
outputs = m(x)
logits.append(outputs.cpu().numpy())
logits_n.append(np.concatenate(logits))
logits_n = np.stack(logits_n, axis=1)
print(logits_n.shape)
np.save(os.path.join(args.savedir, path, "logits.npy"), logits_n)
if __name__ == "__main__":
run()

205
lira-pytorch/plot.py Normal file
View file

@ -0,0 +1,205 @@
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modified copy by Chenxiang Zhang (orientino) of the original:
# https://github.com/tensorflow/privacy/tree/master/research/mi_lira_2021
import argparse
import functools
import os
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats
from sklearn.metrics import auc, roc_curve
matplotlib.rcParams["pdf.fonttype"] = 42
matplotlib.rcParams["ps.fonttype"] = 42
parser = argparse.ArgumentParser()
parser.add_argument("--savedir", default="exp/cifar10", type=str)
args = parser.parse_args()
def sweep(score, x):
"""
Compute a ROC curve and then return the FPR, TPR, AUC, and ACC.
"""
fpr, tpr, _ = roc_curve(x, -score)
acc = np.max(1 - (fpr + (1 - tpr)) / 2)
return fpr, tpr, auc(fpr, tpr), acc
def load_data():
"""
Load our saved scores and then put them into a big matrix.
"""
global scores, keep
scores = []
keep = []
for path in os.listdir(args.savedir):
scores.append(np.load(os.path.join(args.savedir, path, "scores.npy")))
keep.append(np.load(os.path.join(args.savedir, path, "keep.npy")))
scores = np.array(scores)
keep = np.array(keep)
return scores, keep
def generate_ours(keep, scores, check_keep, check_scores, in_size=100000, out_size=100000, fix_variance=False):
"""
Fit a two predictive models using keep and scores in order to predict
if the examples in check_scores were training data or not, using the
ground truth answer from check_keep.
"""
dat_in = []
dat_out = []
for j in range(scores.shape[1]):
dat_in.append(scores[keep[:, j], j, :])
dat_out.append(scores[~keep[:, j], j, :])
in_size = min(min(map(len, dat_in)), in_size)
out_size = min(min(map(len, dat_out)), out_size)
dat_in = np.array([x[:in_size] for x in dat_in])
dat_out = np.array([x[:out_size] for x in dat_out])
mean_in = np.median(dat_in, 1)
mean_out = np.median(dat_out, 1)
if fix_variance:
std_in = np.std(dat_in)
std_out = np.std(dat_in)
else:
std_in = np.std(dat_in, 1)
std_out = np.std(dat_out, 1)
prediction = []
answers = []
for ans, sc in zip(check_keep, check_scores):
pr_in = -scipy.stats.norm.logpdf(sc, mean_in, std_in + 1e-30)
pr_out = -scipy.stats.norm.logpdf(sc, mean_out, std_out + 1e-30)
score = pr_in - pr_out
prediction.extend(score.mean(1))
answers.extend(ans)
return prediction, answers
def generate_ours_offline(keep, scores, check_keep, check_scores, in_size=100000, out_size=100000, fix_variance=False):
"""
Fit a single predictive model using keep and scores in order to predict
if the examples in check_scores were training data or not, using the
ground truth answer from check_keep.
"""
dat_in = []
dat_out = []
for j in range(scores.shape[1]):
dat_in.append(scores[keep[:, j], j, :])
dat_out.append(scores[~keep[:, j], j, :])
out_size = min(min(map(len, dat_out)), out_size)
dat_out = np.array([x[:out_size] for x in dat_out])
mean_out = np.median(dat_out, 1)
if fix_variance:
std_out = np.std(dat_out)
else:
std_out = np.std(dat_out, 1)
prediction = []
answers = []
for ans, sc in zip(check_keep, check_scores):
score = scipy.stats.norm.logpdf(sc, mean_out, std_out + 1e-30)
prediction.extend(score.mean(1))
answers.extend(ans)
return prediction, answers
def generate_global(keep, scores, check_keep, check_scores):
"""
Use a simple global threshold sweep to predict if the examples in
check_scores were training data or not, using the ground truth answer from
check_keep.
"""
prediction = []
answers = []
for ans, sc in zip(check_keep, check_scores):
prediction.extend(-sc.mean(1))
answers.extend(ans)
return prediction, answers
def do_plot(fn, keep, scores, ntest, legend="", metric="auc", sweep_fn=sweep, **plot_kwargs):
"""
Generate the ROC curves by using ntest models as test models and the rest to train.
"""
prediction, answers = fn(keep[:-ntest], scores[:-ntest], keep[-ntest:], scores[-ntest:])
fpr, tpr, auc, acc = sweep_fn(np.array(prediction), np.array(answers, dtype=bool))
low = tpr[np.where(fpr < 0.001)[0][-1]]
print("Attack %s AUC %.4f, Accuracy %.4f, TPR@0.1%%FPR of %.4f" % (legend, auc, acc, low))
metric_text = ""
if metric == "auc":
metric_text = "auc=%.3f" % auc
elif metric == "acc":
metric_text = "acc=%.3f" % acc
plt.plot(fpr, tpr, label=legend + metric_text, **plot_kwargs)
return (acc, auc)
def fig_fpr_tpr():
plt.figure(figsize=(4, 3))
do_plot(generate_ours, keep, scores, 1, "Ours (online)\n", metric="auc")
do_plot(functools.partial(generate_ours, fix_variance=True), keep, scores, 1, "Ours (online, fixed variance)\n", metric="auc")
do_plot(functools.partial(generate_ours_offline), keep, scores, 1, "Ours (offline)\n", metric="auc")
do_plot(functools.partial(generate_ours_offline, fix_variance=True), keep, scores, 1, "Ours (offline, fixed variance)\n", metric="auc")
do_plot(generate_global, keep, scores, 1, "Global threshold\n", metric="auc")
plt.semilogx()
plt.semilogy()
plt.xlim(1e-5, 1)
plt.ylim(1e-5, 1)
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.plot([0, 1], [0, 1], ls="--", color="gray")
plt.subplots_adjust(bottom=0.18, left=0.18, top=0.96, right=0.96)
plt.legend(fontsize=8)
plt.savefig("fprtpr.png")
plt.show()
if __name__ == "__main__":
load_data()
fig_fpr_tpr()

21
lira-pytorch/run.sh Executable file
View file

@ -0,0 +1,21 @@
python3 train.py --epochs 100 --shadow_id 0 --debug
python3 train.py --epochs 100 --shadow_id 1 --debug
python3 train.py --epochs 100 --shadow_id 2 --debug
python3 train.py --epochs 100 --shadow_id 3 --debug
python3 train.py --epochs 100 --shadow_id 4 --debug
python3 train.py --epochs 100 --shadow_id 5 --debug
python3 train.py --epochs 100 --shadow_id 6 --debug
python3 train.py --epochs 100 --shadow_id 7 --debug
python3 train.py --epochs 100 --shadow_id 8 --debug
python3 train.py --epochs 100 --shadow_id 9 --debug
python3 train.py --epochs 100 --shadow_id 10 --debug
python3 train.py --epochs 100 --shadow_id 11 --debug
python3 train.py --epochs 100 --shadow_id 12 --debug
python3 train.py --epochs 100 --shadow_id 13 --debug
python3 train.py --epochs 100 --shadow_id 14 --debug
python3 train.py --epochs 100 --shadow_id 15 --debug
python3 inference.py --savedir exp/cifar10
python3 score.py --savedir exp/cifar10
python3 plot.py --savedir exp/cifar10

16
lira-pytorch/run_distilled.sh Executable file
View file

@ -0,0 +1,16 @@
python3 student_shadow_train.py --epochs 100 --shadow_id 0 --debug
python3 student_shadow_train.py --epochs 100 --shadow_id 1 --debug
python3 student_shadow_train.py --epochs 100 --shadow_id 2 --debug
python3 student_shadow_train.py --epochs 100 --shadow_id 3 --debug
python3 student_shadow_train.py --epochs 100 --shadow_id 4 --debug
python3 student_shadow_train.py --epochs 100 --shadow_id 5 --debug
python3 student_shadow_train.py --epochs 100 --shadow_id 6 --debug
python3 student_shadow_train.py --epochs 100 --shadow_id 7 --debug
python3 student_shadow_train.py --epochs 100 --shadow_id 8 --debug
python3 student_shadow_train.py --epochs 100 --shadow_id 9 --debug
python3 student_shadow_train.py --epochs 100 --shadow_id 10 --debug
python3 student_shadow_train.py --epochs 100 --shadow_id 11 --debug
python3 student_shadow_train.py --epochs 100 --shadow_id 12 --debug
python3 student_shadow_train.py --epochs 100 --shadow_id 13 --debug
python3 student_shadow_train.py --epochs 100 --shadow_id 14 --debug
python3 student_shadow_train.py --epochs 100 --shadow_id 15 --debug

70
lira-pytorch/score.py Normal file
View file

@ -0,0 +1,70 @@
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modified copy by Chenxiang Zhang (orientino) of the original:
# https://github.com/tensorflow/privacy/tree/master/research/mi_lira_2021
import argparse
import multiprocessing as mp
import os
from pathlib import Path
import numpy as np
from torchvision.datasets import CIFAR10
parser = argparse.ArgumentParser()
parser.add_argument("--savedir", default="exp/cifar10", type=str)
args = parser.parse_args()
def load_one(path):
"""
This loads a logits and converts it to a scored prediction.
"""
opredictions = np.load(os.path.join(path, "logits.npy")) # [n_examples, n_augs, n_classes]
# Be exceptionally careful.
# Numerically stable everything, as described in the paper.
predictions = opredictions - np.max(opredictions, axis=-1, keepdims=True)
predictions = np.array(np.exp(predictions), dtype=np.float64)
predictions = predictions / np.sum(predictions, axis=-1, keepdims=True)
labels = get_labels() # TODO generalize this
COUNT = predictions.shape[0]
y_true = predictions[np.arange(COUNT), :, labels[:COUNT]]
print("mean acc", np.mean(predictions[:, 0, :].argmax(1) == labels[:COUNT]))
predictions[np.arange(COUNT), :, labels[:COUNT]] = 0
y_wrong = np.sum(predictions, axis=-1)
logit = np.log(y_true + 1e-45) - np.log(y_wrong + 1e-45)
np.save(os.path.join(path, "scores.npy"), logit)
def get_labels():
datadir = Path().home() / "opt/data/cifar"
train_ds = CIFAR10(root=datadir, train=True, download=True)
return np.array(train_ds.targets)
def load_stats():
with mp.Pool(8) as p:
p.map(load_one, [os.path.join(args.savedir, x) for x in os.listdir(args.savedir)])
if __name__ == "__main__":
load_stats()

View file

@ -0,0 +1,30 @@
import torch
import torch.nn as nn
# Create a similar student class where we return a tuple. We do not apply pooling after flattening.
class ModifiedLightNNCosine(nn.Module):
def __init__(self, num_classes=10):
super(ModifiedLightNNCosine, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(16, 16, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.classifier = nn.Sequential(
nn.Linear(1024, 256),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(256, num_classes)
)
def forward(self, x):
x = self.features(x)
flattened_conv_output = torch.flatten(x, 1)
x = self.classifier(flattened_conv_output)
return x
Model = ModifiedLightNNCosine

View file

@ -0,0 +1,246 @@
# PyTorch implementation of
# https://github.com/tensorflow/privacy/blob/master/research/mi_lira_2021/train.py
#
# author: Chenxiang Zhang (orientino)
#random stuff
import os
import argparse
import time
from pathlib import Path
#torch stuff
import numpy as np
import pytorch_lightning as pl
import torch
import wandb
from torch import nn
from torch.utils.data import DataLoader
from torchvision import models, transforms
from torchvision.datasets import CIFAR10
from tqdm import tqdm
from torch.optim.lr_scheduler import MultiStepLR
import torch.optim as optim
import torch.nn.functional as F
import torchvision
from torchvision import transforms
#privacy libraries
import opacus
from opacus.validators import ModuleValidator
#cutom modules
from utils import json_file_to_pyobj, get_loaders
from WideResNet import WideResNet
import student_model
#suppress warning
import warnings
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument("--lr", default=0.1, type=float)
parser.add_argument("--epochs", default=1, type=int)
parser.add_argument("--n_shadows", default=16, type=int)
parser.add_argument("--shadow_id", default=1, type=int)
parser.add_argument("--model", default="resnet18", type=str)
parser.add_argument("--pkeep", default=0.5, type=float)
parser.add_argument("--savedir", default="exp/cifar10", type=str)
parser.add_argument("--debug", action="store_true")
args = parser.parse_args()
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("mps")
def get_trainset(train_batch_size=128, test_batch_size=10):
print(f"Train batch size: {train_batch_size}")
normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
train_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: F.pad(x.unsqueeze(0),
(4, 4, 4, 4), mode='reflect').squeeze()),
transforms.ToPILImage(),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
test_transform = transforms.Compose([
transforms.ToTensor(),
normalize
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=train_transform)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=test_transform)
return trainset, testset
@torch.no_grad()
def test(model, test_dl, teacher=False):
device = DEVICE
model.to(device)
model.eval()
correct = 0
total = 0
for inputs, labels in test_dl:
inputs, labels = inputs.to(device), labels.to(device)
if teacher:
outputs, _, _, _ = model(inputs)
else:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print(f"Test Accuracy: {accuracy:.2f}%")
return accuracy
def run(teacher, student):
device = DEVICE
seed = np.random.randint(0, 1000000000)
seed ^= int(time.time())
pl.seed_everything(seed)
args.debug = True
wandb.init(project="lira", mode="disabled" if args.debug else "online")
wandb.config.update(args)
# Dataset
train_ds, test_ds = get_trainset()
# Compute the IN / OUT subset:
# If we run each experiment independently then even after a lot of trials
# there will still probably be some examples that were always included
# or always excluded. So instead, with experiment IDs, we guarantee that
# after `args.n_shadows` are done, each example is seen exactly half
# of the time in train, and half of the time not in train.
size = len(train_ds)
np.random.seed(seed)
if args.n_shadows is not None:
np.random.seed(0)
keep = np.random.uniform(0, 1, size=(args.n_shadows, size))
order = keep.argsort(0)
keep = order < int(args.pkeep * args.n_shadows)
keep = np.array(keep[args.shadow_id], dtype=bool)
keep = keep.nonzero()[0]
else:
keep = np.random.choice(size, size=int(args.pkeep * size), replace=False)
keep.sort()
keep_bool = np.full((size), False)
keep_bool[keep] = True
train_ds = torch.utils.data.Subset(train_ds, keep)
train_dl = DataLoader(train_ds, batch_size=128, shuffle=True, num_workers=4)
test_dl = DataLoader(test_ds, batch_size=128, shuffle=False, num_workers=4)
# Train
learning_rate=0.001
T=2
soft_target_loss_weight=0.25
ce_loss_weight=0.75
ce_loss = nn.CrossEntropyLoss()
optimizer = optim.Adam(student.parameters(), lr=learning_rate)
teacher.eval() # Teacher set to evaluation mode
student.train() # Student to train mode
for epoch in range(args.epochs):
running_loss = 0.0
for inputs, labels in train_dl:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
# Forward pass with the teacher model - do not save gradients here as we do not change the teacher's weights
with torch.no_grad():
teacher_logits, _, _, _ = teacher(inputs)
# Forward pass with the student model
student_logits = student(inputs)
#Soften the student logits by applying softmax first and log() second
soft_targets = nn.functional.softmax(teacher_logits / T, dim=-1)
soft_prob = nn.functional.log_softmax(student_logits / T, dim=-1)
# Calculate the soft targets loss. Scaled by T**2 as suggested by the authors of the paper "Distilling the knowledge in a neural network"
soft_targets_loss = torch.sum(soft_targets * (soft_targets.log() - soft_prob)) / soft_prob.size()[0] * (T**2)
# Calculate the true label loss
label_loss = ce_loss(student_logits, labels)
# Weighted sum of the two losses
loss = soft_target_loss_weight * soft_targets_loss + ce_loss_weight * label_loss
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1}/{args.epochs}, Loss: {running_loss / len(train_dl)}")
accuracy = test(student, test_dl)
#saving models
print("saving model")
savedir = os.path.join(args.savedir, str(args.shadow_id))
os.makedirs(savedir, exist_ok=True)
np.save(savedir + "/keep.npy", keep_bool)
torch.save(student.state_dict(), savedir + "/model.pt")
def main():
epochs = args.epochs
json_options = json_file_to_pyobj("wresnet16-audit-cifar10.json")
training_configurations = json_options.training
wrn_depth = training_configurations.wrn_depth
wrn_width = training_configurations.wrn_width
dataset = training_configurations.dataset.lower()
if torch.cuda.is_available():
device = torch.device('cuda:0')
else:
device = torch.device('cpu')
print("Load the teacher model")
# instantiate teacher model
strides = [1, 1, 2, 2]
teacher = WideResNet(d=wrn_depth, k=wrn_width, n_classes=10, input_features=3, output_features=16, strides=strides)
teacher = ModuleValidator.fix(teacher)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(teacher.parameters(), lr=0.1, momentum=0.9, nesterov=True, weight_decay=5e-4)
scheduler = MultiStepLR(optimizer, milestones=[int(elem*epochs) for elem in [0.3, 0.6, 0.8]], gamma=0.2)
train_loader, test_loader = get_loaders(dataset, training_configurations.batch_size)
best_test_set_accuracy = 0
dp_epsilon = 8
dp_delta = 1e-5
norm = 1.0
privacy_engine = opacus.PrivacyEngine()
teacher, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
module=teacher,
optimizer=optimizer,
data_loader=train_loader,
epochs=epochs,
target_epsilon=dp_epsilon,
target_delta=dp_delta,
max_grad_norm=norm,
)
teacher.load_state_dict(torch.load(os.path.join("wrn-1733078278-8e-1e-05d-12.0n-dict.pt"), weights_only=True))
teacher.to(device)
teacher.eval()
#instantiate student "shadow model"
student = student_model.Model(num_classes=10).to(device)
# Check norm of layer for both networks -- student should be smaller?
print("Norm of 1st layer for teacher:", torch.norm(teacher.conv1.weight).item())
print("Norm of 1st layer for student:", torch.norm(student.features[0].weight).item())
#train student shadow model
run(teacher=teacher, student=student)
if __name__ == "__main__":
main()

257
lira-pytorch/train.py Normal file
View file

@ -0,0 +1,257 @@
# PyTorch implementation of
# https://github.com/tensorflow/privacy/blob/master/research/mi_lira_2021/train.py
#
# author: Chenxiang Zhang (orientino)
import argparse
import os
import time
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
import wandb
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import models, transforms
from torchvision.datasets import CIFAR10
from tqdm import tqdm
from opacus.validators import ModuleValidator
from opacus import PrivacyEngine
from opacus.utils.batch_memory_manager import BatchMemoryManager
import pyvacy
#from pyvacy import optim#, analysis, sampling
from wide_resnet import WideResNet
parser = argparse.ArgumentParser()
parser.add_argument("--lr", default=0.1, type=float)
parser.add_argument("--epochs", default=1, type=int)
parser.add_argument("--n_shadows", default=16, type=int)
parser.add_argument("--shadow_id", default=1, type=int)
parser.add_argument("--model", default="resnet18", type=str)
parser.add_argument("--pkeep", default=0.5, type=float)
parser.add_argument("--savedir", default="exp/cifar10", type=str)
parser.add_argument("--debug", action="store_true")
args = parser.parse_args()
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("mps")
EPOCHS = args.epochs
class DewisNet(nn.Module):
def __init__(self):
super(DewisNet, self).__init__()
# I started my model from the tutorial: https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html,
# then modified it.
# 2 convolutional layers, with pooling after each
self.conv1 = nn.Conv2d(3, 12, 5)
self.conv2 = nn.Conv2d(12, 32, 5)
self.pool = nn.MaxPool2d(2, 2)
# 3 linear layers
self.fc1 = nn.Linear(32 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
class JagielskiNet(nn.Module):
def __init__(self, input_shape, num_classes, l2=0.01):
super(JagielskiNet, self).__init__()
self.flatten = nn.Flatten()
input_dim = 1
for dim in input_shape:
input_dim *= dim
self.dense1 = nn.Linear(input_dim, 32)
self.relu1 = nn.ReLU()
self.dense2 = nn.Linear(32, num_classes)
# Initialize weights with Glorot Normal (Xavier Normal)
torch.nn.init.xavier_normal_(self.dense1.weight)
torch.nn.init.xavier_normal_(self.dense2.weight)
# L2 regularization (weight decay)
self.l2 = l2
def forward(self, x):
x = self.flatten(x)
x = self.dense1(x)
x = self.relu1(x)
x = self.dense2(x)
return x
def run():
seed = np.random.randint(0, 1000000000)
seed ^= int(time.time())
pl.seed_everything(seed)
args.debug = True
wandb.init(project="lira", mode="disabled" if args.debug else "online")
wandb.config.update(args)
# Dataset
train_transform = transforms.Compose(
[
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2470, 0.2435, 0.2616]),
]
)
test_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2470, 0.2435, 0.2616]),
]
)
datadir = Path().home() / "opt/data/cifar"
train_ds = CIFAR10(root=datadir, train=True, download=True, transform=train_transform)
test_ds = CIFAR10(root=datadir, train=False, download=True, transform=test_transform)
# Compute the IN / OUT subset:
# If we run each experiment independently then even after a lot of trials
# there will still probably be some examples that were always included
# or always excluded. So instead, with experiment IDs, we guarantee that
# after `args.n_shadows` are done, each example is seen exactly half
# of the time in train, and half of the time not in train.
size = len(train_ds)
np.random.seed(seed)
if args.n_shadows is not None:
np.random.seed(0)
keep = np.random.uniform(0, 1, size=(args.n_shadows, size))
order = keep.argsort(0)
keep = order < int(args.pkeep * args.n_shadows)
keep = np.array(keep[args.shadow_id], dtype=bool)
keep = keep.nonzero()[0]
else:
keep = np.random.choice(size, size=int(args.pkeep * size), replace=False)
keep.sort()
keep_bool = np.full((size), False)
keep_bool[keep] = True
train_ds = torch.utils.data.Subset(train_ds, keep)
train_dl = DataLoader(train_ds, batch_size=256, shuffle=True, num_workers=4)
test_dl = DataLoader(test_ds, batch_size=128, shuffle=False, num_workers=4)
# Model
if args.model == "dewisnet":
m = DewisNet()
elif args.model == "jnet":
m = JagielskiNet((3,32,32), 10)
elif args.model == "wresnet28-2":
m = WideResNet(28, 2, 0.0, 10)
elif args.model == "wresnet28-10":
m = WideResNet(28, 10, 0.3, 10)
elif args.model == "resnet18":
m = models.resnet18(weights=None, num_classes=10)
m.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
m.maxpool = nn.Identity()
else:
raise NotImplementedError
m = m.to(DEVICE)
m = ModuleValidator.fix(m)
ModuleValidator.validate(m, strict=True)
print(f"Device: {DEVICE}")
optim = torch.optim.SGD(m.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
#optim = pyvacy.DPSGD(
# params=m.parameters(),
# lr=args.lr,
# momentum=0.9,
# weight_decay=5e-4,
#)
sched = torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max=args.epochs)
# Train
if False:
privacy_engine = PrivacyEngine()
m, optim, train_dl = privacy_engine.make_private_with_epsilon(
module=m,
optimizer=optim,
data_loader=train_dl,
epochs=args.epochs,
target_epsilon=8,
target_delta=1e-4,
max_grad_norm=1.0,
batch_first=True,
)
with BatchMemoryManager(
data_loader=train_dl,
max_physical_batch_size=1000,
optimizer=optim
) as memory_safe_data_loader:
for i in tqdm(range(args.epochs)):
m.train()
loss_total = 0
pbar = tqdm(memory_safe_data_loader, leave=False)
for itr, (x, y) in enumerate(pbar):
x, y = x.to(DEVICE), y.to(DEVICE)
loss = F.cross_entropy(m(x), y)
loss_total += loss
pbar.set_postfix_str(f"loss: {loss:.2f}")
optim.zero_grad()
loss.backward()
optim.step()
sched.step()
wandb.log({"loss": loss_total / len(train_dl)})
else:
for i in tqdm(range(args.epochs)):
m.train()
loss_total = 0
pbar = tqdm(train_dl, leave=False)
for itr, (x, y) in enumerate(pbar):
x, y = x.to(DEVICE), y.to(DEVICE)
loss = F.cross_entropy(m(x), y)
loss_total += loss
pbar.set_postfix_str(f"loss: {loss:.2f}")
optim.zero_grad()
loss.backward()
optim.step()
sched.step()
wandb.log({"loss": loss_total / len(train_dl)})
print(f"[test] acc_test: {get_acc(m, test_dl):.4f}")
wandb.log({"acc_test": get_acc(m, test_dl)})
savedir = os.path.join(args.savedir, str(args.shadow_id))
os.makedirs(savedir, exist_ok=True)
np.save(savedir + "/keep.npy", keep_bool)
torch.save(m.state_dict(), savedir + "/model.pt")
@torch.no_grad()
def get_acc(model, dl):
acc = []
for x, y in dl:
x, y = x.to(DEVICE), y.to(DEVICE)
acc.append(torch.argmax(model(x), dim=1) == y)
acc = torch.cat(acc)
acc = torch.sum(acc) / len(acc)
return acc.item()
if __name__ == "__main__":
run()

View file

@ -0,0 +1,75 @@
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
class wide_basic(nn.Module):
def __init__(self, in_planes, planes, dropout_rate, stride=1):
super(wide_basic, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1)
self.dropout = nn.Dropout(p=dropout_rate)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride),
)
def forward(self, x):
out = self.conv1(F.relu(self.bn1(x)))
out = self.dropout(out)
out = self.conv2(F.relu(self.bn2(out)))
out += self.shortcut(x)
return out
class WideResNet(nn.Module):
def __init__(self, depth, widen_factor, dropout_rate, n_classes):
super(WideResNet, self).__init__()
self.in_planes = 16
assert (depth - 4) % 6 == 0, "Wide-ResNet depth should be 6n+4"
n = (depth - 4) // 6
k = widen_factor
stages = [16, 16 * k, 32 * k, 64 * k]
self.conv1 = nn.Conv2d(3, stages[0], kernel_size=3, stride=1, padding=1)
self.layer1 = self._wide_layer(wide_basic, stages[1], n, dropout_rate, stride=1)
self.layer2 = self._wide_layer(wide_basic, stages[2], n, dropout_rate, stride=2)
self.layer3 = self._wide_layer(wide_basic, stages[3], n, dropout_rate, stride=2)
self.bn1 = nn.BatchNorm2d(stages[3], momentum=0.9)
self.linear = nn.Linear(stages[3], n_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
nn.init.constant_(m.bias, 0)
def _wide_layer(self, block, planes, n_blocks, dropout_rate, stride):
strides = [stride] + [1] * (int(n_blocks) - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, dropout_rate, stride))
self.in_planes = planes
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = F.relu(self.bn1(out))
out = F.avg_pool2d(out, 8)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out

34
wresnet-pytorch/README.md Normal file
View file

@ -0,0 +1,34 @@
# Wide Residual Networks in PyTorch
Implementation of Wide Residual Networks (WRNs) in PyTorch.
## How to train WRNs
At the moment the CIFAR10 and SVHN datasets are fully supported, with specific augmentations for CIFAR10 drawn from related literature and mean/std normalization for SVHN, and multistep learning rate scheduling for both cases. Training is executed through JSON configuration files, which you can modify or extend to support other configurations of WRNs and/or extend datasets etc.
### Example Runs
Train a WideResNet-16-1 on CIFAR10:
```
python train.py --config configs/WRN-16-1-scratch-CIFAR10.json
```
Train a WideResNet-40-2 on SVHN:
```
python train.py --config configs/WRN-40-2-scratch-SVHN.json
```
## Results
This work has been tested with 4 variants of WRNs. When setting the seed generator equal to 0, you should expect a test-set accuracy performance close to the following values:
|Model | CIFAR10 | SVHN |
|:---------|:--------|:-------|
| WRN-16-1 |90.97% | 95.52% |
| WRN-16-2 |94.21% | 96.17% |
| WRN-40-1 |93.52% | 96.07% |
| WRN-40-2 |95.14% | 96.14% |
## Notes
The motivation for originally implementing WRNs in PyTorch was [this](https://github.com/AlexandrosFerles/NIPS_2019_Reproducibilty_Challenge_Zero-shot_Knowledge_Transfer_via_Adversarial_Belief_Matching) NeurIPS reproducibility project, where WRNs were used as the main framework for few-shot and zero-shot knowledge transfer.

View file

@ -0,0 +1,143 @@
import torch
import torch.nn as nn
from torchsummary import summary
import math
class IndividualBlock1(nn.Module):
def __init__(self, input_features, output_features, stride, subsample_input=True, increase_filters=True):
super(IndividualBlock1, self).__init__()
self.activation = nn.ReLU(inplace=True)
self.batch_norm1 = nn.BatchNorm2d(input_features)
self.batch_norm2 = nn.BatchNorm2d(output_features)
self.conv1 = nn.Conv2d(input_features, output_features, kernel_size=3, stride=stride, padding=1, bias=False)
self.conv2 = nn.Conv2d(output_features, output_features, kernel_size=3, stride=1, padding=1, bias=False)
self.subsample_input = subsample_input
self.increase_filters = increase_filters
if subsample_input:
self.conv_inp = nn.Conv2d(input_features, output_features, kernel_size=1, stride=2, padding=0, bias=False)
elif increase_filters:
self.conv_inp = nn.Conv2d(input_features, output_features, kernel_size=1, stride=1, padding=0, bias=False)
def forward(self, x):
if self.subsample_input or self.increase_filters:
x = self.batch_norm1(x)
x = self.activation(x)
x1 = self.conv1(x)
else:
x1 = self.batch_norm1(x)
x1 = self.activation(x1)
x1 = self.conv1(x1)
x1 = self.batch_norm2(x1)
x1 = self.activation(x1)
x1 = self.conv2(x1)
if self.subsample_input or self.increase_filters:
return self.conv_inp(x) + x1
else:
return x + x1
class IndividualBlockN(nn.Module):
def __init__(self, input_features, output_features, stride):
super(IndividualBlockN, self).__init__()
self.activation = nn.ReLU(inplace=True)
self.batch_norm1 = nn.BatchNorm2d(input_features)
self.batch_norm2 = nn.BatchNorm2d(output_features)
self.conv1 = nn.Conv2d(input_features, output_features, kernel_size=3, stride=stride, padding=1, bias=False)
self.conv2 = nn.Conv2d(output_features, output_features, kernel_size=3, stride=stride, padding=1, bias=False)
def forward(self, x):
x1 = self.batch_norm1(x)
x1 = self.activation(x1)
x1 = self.conv1(x1)
x1 = self.batch_norm2(x1)
x1 = self.activation(x1)
x1 = self.conv2(x1)
return x1 + x
class Nblock(nn.Module):
def __init__(self, N, input_features, output_features, stride, subsample_input=True, increase_filters=True):
super(Nblock, self).__init__()
layers = []
for i in range(N):
if i == 0:
layers.append(IndividualBlock1(input_features, output_features, stride, subsample_input, increase_filters))
else:
layers.append(IndividualBlockN(output_features, output_features, stride=1))
self.nblockLayer = nn.Sequential(*layers)
def forward(self, x):
return self.nblockLayer(x)
class WideResNet(nn.Module):
def __init__(self, d, k, n_classes, input_features, output_features, strides):
super(WideResNet, self).__init__()
self.conv1 = nn.Conv2d(input_features, output_features, kernel_size=3, stride=strides[0], padding=1, bias=False)
filters = [16 * k, 32 * k, 64 * k]
self.out_filters = filters[-1]
N = (d - 4) // 6
increase_filters = k > 1
self.block1 = Nblock(N, input_features=output_features, output_features=filters[0], stride=strides[1], subsample_input=False, increase_filters=increase_filters)
self.block2 = Nblock(N, input_features=filters[0], output_features=filters[1], stride=strides[2])
self.block3 = Nblock(N, input_features=filters[1], output_features=filters[2], stride=strides[3])
self.batch_norm = nn.BatchNorm2d(filters[-1])
self.activation = nn.ReLU(inplace=True)
self.avg_pool = nn.AvgPool2d(kernel_size=8)
self.fc = nn.Linear(filters[-1], n_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
def forward(self, x):
x = self.conv1(x)
attention1 = self.block1(x)
attention2 = self.block2(attention1)
attention3 = self.block3(attention2)
out = self.batch_norm(attention3)
out = self.activation(out)
out = self.avg_pool(out)
out = out.view(-1, self.out_filters)
return self.fc(out), attention1, attention2, attention3
if __name__ == '__main__':
# change d and k if you want to check a model other than WRN-40-2
d = 40
k = 2
strides = [1, 1, 2, 2]
net = WideResNet(d=d, k=k, n_classes=10, input_features=3, output_features=16, strides=strides)
# verify that an output is produced
sample_input = torch.ones(size=(1, 3, 32, 32), requires_grad=False)
net(sample_input)
# Summarize model
summary(net, input_size=(3, 32, 32))

View file

@ -0,0 +1,10 @@
{
"training":{
"dataset": "CIFAR10",
"wrn_depth": 16,
"wrn_width": 1,
"seeds": "0",
"checkpoint": "True",
"log": "True"
}
}

View file

@ -0,0 +1,10 @@
{
"training":{
"dataset": "SVHN",
"wrn_depth": 16,
"wrn_width": 1,
"seeds": "0",
"checkpoint": "True",
"log": "True"
}
}

View file

@ -0,0 +1,10 @@
{
"training":{
"dataset": "CIFAR10",
"wrn_depth": 16,
"wrn_width": 2,
"seeds": "0",
"checkpoint": "True",
"log": "True"
}
}

View file

@ -0,0 +1,10 @@
{
"training":{
"dataset": "SVHN",
"wrn_depth": 16,
"wrn_width": 2,
"seeds": "0",
"checkpoint": "True",
"log": "True"
}
}

View file

@ -0,0 +1,10 @@
{
"training":{
"dataset": "CIFAR10",
"wrn_depth": 40,
"wrn_width": 1,
"seeds": "0",
"checkpoint": "True",
"log": "True"
}
}

View file

@ -0,0 +1,10 @@
{
"training":{
"dataset": "SVHN",
"wrn_depth": 40,
"wrn_width": 1,
"seeds": "0",
"checkpoint": "True",
"log": "True"
}
}

View file

@ -0,0 +1,10 @@
{
"training":{
"dataset": "CIFAR10",
"wrn_depth": 40,
"wrn_width": 2,
"seeds": "012",
"checkpoint": "True",
"log": "True"
}
}

View file

@ -0,0 +1,10 @@
{
"training":{
"dataset": "SVHN",
"wrn_depth": 40,
"wrn_width": 2,
"seeds": "012",
"checkpoint": "True",
"log": "True"
}
}

View file

@ -0,0 +1,168 @@
from datetime import datetime
import time
import argparse
from utils import json_file_to_pyobj, get_loaders
from WideResNet import WideResNet
from opacus.validators import ModuleValidator
import os
from pathlib import Path
from torch.optim.lr_scheduler import MultiStepLR
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader
import os
import torch
import torch.nn as nn
from torchvision import models, transforms
import student_model
import torch.optim as optim
import torch.nn.functional as F
import opacus
import warnings
warnings.filterwarnings("ignore")
def train_knowledge_distillation(teacher, student, train_dl, epochs, learning_rate, T, soft_target_loss_weight, ce_loss_weight, device):
# Dataset
ce_loss = nn.CrossEntropyLoss()
optimizer = optim.Adam(student.parameters(), lr=learning_rate)
teacher.eval() # Teacher set to evaluation mode
student.train() # Student to train mode
for epoch in range(epochs):
running_loss = 0.0
for inputs, labels in train_dl:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
# Forward pass with the teacher model - do not save gradients here as we do not change the teacher's weights
with torch.no_grad():
teacher_logits, _, _, _ = teacher(inputs)
# Forward pass with the student model
student_logits = student(inputs)
#Soften the student logits by applying softmax first and log() second
soft_targets = nn.functional.softmax(teacher_logits / T, dim=-1)
soft_prob = nn.functional.log_softmax(student_logits / T, dim=-1)
# Calculate the soft targets loss. Scaled by T**2 as suggested by the authors of the paper "Distilling the knowledge in a neural network"
soft_targets_loss = torch.sum(soft_targets * (soft_targets.log() - soft_prob)) / soft_prob.size()[0] * (T**2)
# Calculate the true label loss
label_loss = ce_loss(student_logits, labels)
# Weighted sum of the two losses
loss = soft_target_loss_weight * soft_targets_loss + ce_loss_weight * label_loss
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1}/{epochs}, Loss: {running_loss / len(train_dl)}")
@torch.no_grad()
def test(model, device, test_dl, is_teacher=False):
model.to(device)
model.eval()
correct = 0
total = 0
for inputs, labels in test_dl:
inputs, labels = inputs.to(device), labels.to(device)
if is_teacher:
outputs, _, _, _ = model(inputs)
else:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
return accuracy
def main():
parser = argparse.ArgumentParser(description='Student trainer')
parser.add_argument('--teacher', type=Path, help='path to saved teacher .pt', required=True)
parser.add_argument('--norm', type=float, help='dpsgd norm clip factor', required=True)
parser.add_argument('--cuda', type=int, help='gpu index', required=False)
parser.add_argument('--epsilon', type=float, help='dp epsilon', required=False, default=None)
parser.add_argument('--epochs', type=int, help='student epochs', required=True)
args = parser.parse_args()
json_options = json_file_to_pyobj("wresnet16-audit-cifar10.json")
training_configurations = json_options.training
wrn_depth = training_configurations.wrn_depth
wrn_width = training_configurations.wrn_width
dataset = training_configurations.dataset.lower()
if args.cuda is not None:
device = torch.device(f'cuda:{args.cuda}')
elif torch.cuda.is_available():
device = torch.device('cuda:0')
else:
device = torch.device('cpu')
epochs=10
print("Load the teacher model")
# instantiate teacher model
strides = [1, 1, 2, 2]
teacher = WideResNet(d=wrn_depth, k=wrn_width, n_classes=10, input_features=3, output_features=16, strides=strides)
teacher = ModuleValidator.fix(teacher)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(teacher.parameters(), lr=0.1, momentum=0.9, nesterov=True, weight_decay=5e-4)
scheduler = MultiStepLR(optimizer, milestones=[int(elem*epochs) for elem in [0.3, 0.6, 0.8]], gamma=0.2)
train_loader, test_loader = get_loaders(dataset, training_configurations.batch_size)
best_test_set_accuracy = 0
if args.epsilon is not None:
dp_epsilon = args.epsilon
dp_delta = 1e-5
norm = args.norm
privacy_engine = opacus.PrivacyEngine()
teacher, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
module=teacher,
optimizer=optimizer,
data_loader=train_loader,
epochs=epochs,
target_epsilon=dp_epsilon,
target_delta=dp_delta,
max_grad_norm=norm,
)
teacher.load_state_dict(torch.load(args.teacher, weights_only=True))
teacher.to(device)
teacher.eval()
#instantiate istudent
student = student_model.Model(num_classes=10).to(device)
print("Training student")
train_knowledge_distillation(
teacher=teacher,
student=student,
train_dl=train_loader,
epochs=args.epochs,
learning_rate=0.001,
T=2,
soft_target_loss_weight=0.25,
ce_loss_weight=0.75,
device=device
)
print(f"Saving student model for time {int(time.time())}")
Path('students').mkdir(exist_ok=True)
torch.save(student.state_dict(), f"students/studentmodel-{int(time.time())}.pt")
print("Testing student and teacher")
test_student = test(student, device, test_loader)
test_teacher = test(teacher, device, test_loader, True)
print(f"Teacher accuracy: {test_teacher:.2f}%")
print(f"Student accuracy: {test_student:.2f}%")
if __name__ == "__main__":
main()

View file

@ -0,0 +1,29 @@
import torch
import torch.nn as nn
# Create a similar student class where we return a tuple. We do not apply pooling after flattening.
class ModifiedLightNNCosine(nn.Module):
def __init__(self, num_classes=10):
super(ModifiedLightNNCosine, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(16, 16, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.classifier = nn.Sequential(
nn.Linear(1024, 256),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(256, num_classes)
)
def forward(self, x):
x = self.features(x)
flattened_conv_output = torch.flatten(x, 1)
x = self.classifier(flattened_conv_output)
return x
Model = ModifiedLightNNCosine

View file

@ -0,0 +1,199 @@
import os
import time
import torch
from torch import optim
from torch.optim.lr_scheduler import MultiStepLR
import torch.nn as nn
import numpy as np
import random
from utils import json_file_to_pyobj, get_loaders
from WideResNet import WideResNet
from tqdm import tqdm
import opacus
from opacus.validators import ModuleValidator
from opacus.utils.batch_memory_manager import BatchMemoryManager
import warnings
warnings.filterwarnings("ignore")
def set_seed(seed=42):
torch.backends.cudnn.deterministic = True
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def train_no_cap(net, epochs, data_loader, device, optimizer, criterion, scheduler, test_loader, log, logfile, checkpointFile):
best_test_set_accuracy = 0
for epoch in range(epochs):
net.train()
#for i, data in tqdm(enumerate(train_loader, 0), leave=False):
for i, data in enumerate(data_loader, 0):
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
wrn_outputs = net(inputs)
outputs = wrn_outputs[0]
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
scheduler.step()
if epoch % 10 == 0 or epoch == epochs - 1:
with torch.no_grad():
correct = 0
total = 0
net.eval()
for data in test_loader:
images, labels = data
images = images.to(device)
labels = labels.to(device)
wrn_outputs = net(images)
outputs = wrn_outputs[0]
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
epoch_accuracy = correct / total
epoch_accuracy = round(100 * epoch_accuracy, 2)
if log:
print('Accuracy at epoch {} is {}%'.format(epoch + 1, epoch_accuracy))
with open(logfile, 'a') as temp:
temp.write('Accuracy at epoch {} is {}%\n'.format(epoch + 1, epoch_accuracy))
if epoch_accuracy > best_test_set_accuracy:
best_test_set_accuracy = epoch_accuracy
torch.save(net.state_dict(), checkpointFile)
return best_test_set_accuracy
def _train_seed(net, loaders, device, dataset, log=False, logfile='', epochs=200, norm=1.0, dp_epsilon=None):
train_loader, test_loader = loaders
dp_delta = 1e-5
checkpointFile = 'wrn-{}-{}e-{}d-{}n-dict.pt'.format(int(time.time()), dp_epsilon, dp_delta, norm)
#net = ModuleValidator.fix(net, replace_bn_with_in=True)
net = ModuleValidator.fix(net)
ModuleValidator.validate(net, strict=True)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, nesterov=True, weight_decay=5e-4)
scheduler = MultiStepLR(optimizer, milestones=[int(elem*epochs) for elem in [0.3, 0.6, 0.8]], gamma=0.2)
if dp_epsilon is not None:
privacy_engine = opacus.PrivacyEngine()
net, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
module=net,
optimizer=optimizer,
data_loader=train_loader,
epochs=epochs,
target_epsilon=dp_epsilon,
target_delta=dp_delta,
max_grad_norm=norm,
)
print(f"DP epsilon = {dp_epsilon}, delta = {dp_delta}")
print(f"Using sigma={optimizer.noise_multiplier} and C = norm = {norm}")
else:
print("Training without differential privacy")
print(f"Training with {epochs} epochs")
if dp_epsilon is not None:
with BatchMemoryManager(
data_loader=train_loader,
max_physical_batch_size=1000, # Roughly 12gb vram, uses 9.4
optimizer=optimizer
) as memory_safe_data_loader:
best_test_set_accuracy = train_no_cap(net, epochs, memory_safe_data_loader, device, optimizer, criterion, scheduler, test_loader, log, logfile, checkpointFile)
else:
best_test_set_accuracy = train_no_cap(net, epochs, train_loader, device, optimizer, criterion, scheduler, test_loader, log, logfile, checkpointFile)
return best_test_set_accuracy
def train(args):
json_options = json_file_to_pyobj(args.config)
training_configurations = json_options.training
wrn_depth = training_configurations.wrn_depth
wrn_width = training_configurations.wrn_width
dataset = training_configurations.dataset.lower()
#seeds = [int(seed) for seed in training_configurations.seeds]
seeds = [int.from_bytes(os.urandom(4), byteorder='big')]
log = True if training_configurations.log.lower() == 'true' else False
if log:
logfile = 'WideResNet-{}-{}-{}-{}-{}.txt'.format(wrn_depth, wrn_width, training_configurations.dataset, training_configurations.batch_size, training_configurations.epochs)
with open(logfile, 'w') as temp:
temp.write('WideResNet-{}-{} on {} {}batch for {} epochs\n'.format(wrn_depth, wrn_width, training_configurations.dataset, training_configurations.batch_size, training_configurations.epochs))
else:
logfile = ''
checkpoint = True if training_configurations.checkpoint.lower() == 'true' else False
loaders = get_loaders(dataset, training_configurations.batch_size)
if torch.cuda.is_available() and args.cuda:
device = torch.device(f'cuda:{args.cuda}')
elif torch.cuda.is_available():
device = torch.device('cuda:0')
else:
device = torch.device('cpu')
test_set_accuracies = []
for seed in seeds:
set_seed(seed)
if log:
with open(logfile, 'a') as temp:
temp.write('------------------- SEED {} -------------------\n'.format(seed))
strides = [1, 1, 2, 2]
net = WideResNet(d=wrn_depth, k=wrn_width, n_classes=10, input_features=3, output_features=16, strides=strides)
net = net.to(device)
epochs = training_configurations.epochs
best_test_set_accuracy = _train_seed(net, loaders, device, dataset, log, logfile, epochs, args.norm, args.epsilon)
if log:
with open(logfile, 'a') as temp:
temp.write('Best test set accuracy of seed {} is {}\n'.format(seed, best_test_set_accuracy))
test_set_accuracies.append(best_test_set_accuracy)
mean_test_set_accuracy, std_test_set_accuracy = np.mean(test_set_accuracies), np.std(test_set_accuracies)
if log:
with open(logfile, 'a') as temp:
temp.write('Mean test set accuracy is {} with standard deviation equal to {}\n'.format(mean_test_set_accuracy, std_test_set_accuracy))
if __name__ == '__main__':
import argparse
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 2, 3"
parser = argparse.ArgumentParser(description='WideResNet')
parser.add_argument('-config', '--config', help='Training Configurations', required=True)
parser.add_argument('--norm', type=float, help='dpsgd norm clip factor', required=True)
parser.add_argument('--cuda', type=int, help='gpu index', required=False)
parser.add_argument('--epsilon', type=float, help='dp epsilon', required=False, default=None)
args = parser.parse_args()
train(args)

View file

@ -0,0 +1,61 @@
import json
import collections
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
# Borrowed from https://github.com/ozan-oktay/Attention-Gated-Networks
def json_file_to_pyobj(filename):
def _json_object_hook(d): return collections.namedtuple('X', d.keys())(*d.values())
def json2obj(data): return json.loads(data, object_hook=_json_object_hook)
return json2obj(open(filename).read())
def get_loaders(dataset, train_batch_size=128, test_batch_size=10):
print(f"Train batch size: {train_batch_size}")
if dataset == 'cifar10':
normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
train_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: F.pad(x.unsqueeze(0),
(4, 4, 4, 4), mode='reflect').squeeze()),
transforms.ToPILImage(),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
test_transform = transforms.Compose([
transforms.ToTensor(),
normalize
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transform)
trainloader = DataLoader(trainset, batch_size=train_batch_size, shuffle=True, num_workers=4)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=test_transform)
testloader = DataLoader(testset, batch_size=test_batch_size, shuffle=True, num_workers=4)
elif dataset == 'svhn':
normalize = transforms.Normalize((0.4377, 0.4438, 0.4728), (0.1980, 0.2010, 0.1970))
transform = transforms.Compose([
transforms.ToTensor(),
normalize,
])
trainset = torchvision.datasets.SVHN(root='./data', split='train', download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=train_batch_size, shuffle=True, num_workers=4)
testset = torchvision.datasets.SVHN(root='./data', split='test', download=True, transform=transform)
testloader = DataLoader(testset, batch_size=test_batch_size, shuffle=True, num_workers=4)
return trainloader, testloader

View file

@ -0,0 +1,11 @@
{
"training":{
"dataset": "CIFAR10",
"wrn_depth": 16,
"wrn_width": 1,
"checkpoint": "True",
"log": "True",
"batch_size": 4096,
"epochs": 200
}
}