Compare commits

...

3 commits

Author SHA1 Message Date
f407827ac1
O1: add wrn2 architecture 2024-12-07 14:00:39 -07:00
5da8c44743
O1: add simple convnet 2024-12-07 14:00:06 -07:00
7b77748dcd
O1: wrn2 fixes 2024-12-07 13:59:39 -07:00
3 changed files with 448 additions and 16 deletions

View file

@ -15,12 +15,15 @@ from torchvision.datasets import CIFAR10
import pytorch_lightning as pl
import opacus
import random
from tqdm import tqdm
from opacus.validators import ModuleValidator
from opacus.utils.batch_memory_manager import BatchMemoryManager
from WideResNet import WideResNet
from equations import get_eps_audit
import student_model
import fast_model
import convnet_classifier
import wrn
import warnings
warnings.filterwarnings("ignore")
@ -230,8 +233,10 @@ def get_dataloaders_raw(m=1000, train_batch_size=512, test_batch_size=10):
train_x = preprocess_data(train_x)
test_x = preprocess_data(test_x)
attack_x = preprocess_data(attack_x)
train_y = torch.tensor(train_y)
test_y = torch.tensor(test_y)
attack_y = torch.tensor(attack_y)
train_dl = DataLoader(
TensorDataset(train_x, train_y.long()),
@ -246,7 +251,7 @@ def get_dataloaders_raw(m=1000, train_batch_size=512, test_batch_size=10):
shuffle=True,
num_workers=4
)
return train_dl, test_dl, train_x
return train_dl, test_dl, train_x, attack_x.numpy(), attack_y.numpy(), S
def evaluate_on(model, dataloader):
correct = 0
@ -398,6 +403,70 @@ def load(hp, model_path, train_dl):
return model_init, model, adv_points, adv_labels, S
def train_wrn2(hp, train_dl, test_dl):
model = wrn.WideResNet(16, 10, 4)
model = model.to(DEVICE)
#model = ModuleValidator.fix(model)
ModuleValidator.validate(model, strict=True)
model_init = copy.deepcopy(model)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(
model.parameters(),
lr=0.12,
momentum=0.9,
weight_decay=1e-4
)
scheduler = MultiStepLR(
optimizer,
milestones=[int(i * hp['epochs']) for i in [0.3, 0.6, 0.8]],
gamma=0.1
)
print(f"Training with {hp['epochs']} epochs")
if hp['epsilon'] is not None:
privacy_engine = opacus.PrivacyEngine()
model, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
module=model,
optimizer=optimizer,
data_loader=train_dl,
epochs=hp['epochs'],
target_epsilon=hp['epsilon'],
target_delta=hp['delta'],
max_grad_norm=hp['norm'],
)
print(f"DP epsilon = {hp['epsilon']}, delta = {hp['delta']}")
print(f"Using sigma={optimizer.noise_multiplier} and C = norm = {hp['norm']}")
with BatchMemoryManager(
data_loader=train_loader,
max_physical_batch_size=10, # 1000 ~= 9.4GB vram
optimizer=optimizer
) as memory_safe_data_loader:
best_test_set_accuracy = train_no_cap(
model,
hp,
memory_safe_data_loader,
test_dl,
optimizer,
criterion,
scheduler,
)
else:
print("Training without differential privacy")
best_test_set_accuracy = train_no_cap(
model,
hp,
train_dl,
test_dl,
optimizer,
criterion,
scheduler,
)
return model_init, model
def train_small(hp, train_dl, test_dl):
model = student_model.Model(num_classes=10).to(DEVICE)
@ -460,7 +529,7 @@ def train_small(hp, train_dl, test_dl):
return model_init, model
def train_fast(hp):
def train_fast(hp, train_dl, test_dl, train_x):
epochs = hp['epochs']
momentum = 0.9
weight_decay = 0.256
@ -472,8 +541,6 @@ def train_fast(hp):
print("=========================")
print("Training a fast model")
print("=========================")
train_dl, test_dl, train_x = get_dataloaders_raw(hp['target_points'])
weights = fast_model.patch_whitening(train_x[:10000, :, 4:-4, 4:-4])
model = fast_model.Model(weights, c_in=3, c_out=10, scale_out=0.125)
@ -520,6 +587,75 @@ def train_fast(hp):
train_no_cap(model, hp, train_dl, test_dl, optimizer, criterion, scheduler)
return init_model, model
def train_convnet(hp, train_dl, test_dl):
model = convnet_classifier.ConvNet()
model = model.to(DEVICE)
#model = ModuleValidator.fix(model)
ModuleValidator.validate(model, strict=True)
model_init = copy.deepcopy(model)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
#if hp['epochs'] <= 10:
# optimizer = optim.Adam(model.parameters(), lr=lr)
#elif hp['epochs'] > 10 and hp['epochs'] <= 25:
# optimizer = optim.Adam(model.parameters(), lr=(lr/10))
#else:
# optimizer = optim.Adam(model.parameters(), lr=(lr/50))
scheduler = MultiStepLR(optimizer, milestones=[10, 25], gamma=0.1)
# scheduler = MultiStepLR(
# optimizer,
# milestones=[int(i * hp['epochs']) for i in [0.3, 0.6, 0.8]],
# gamma=0.2
# )
print(f"Training with {hp['epochs']} epochs")
if hp['epsilon'] is not None:
privacy_engine = opacus.PrivacyEngine()
model, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
module=model,
optimizer=optimizer,
data_loader=train_dl,
epochs=hp['epochs'],
target_epsilon=hp['epsilon'],
target_delta=hp['delta'],
max_grad_norm=hp['norm'],
)
print(f"DP epsilon = {hp['epsilon']}, delta = {hp['delta']}")
print(f"Using sigma={optimizer.noise_multiplier} and C = norm = {hp['norm']}")
with BatchMemoryManager(
data_loader=train_loader,
max_physical_batch_size=2000, # 1000 ~= 9.4GB vram
optimizer=optimizer
) as memory_safe_data_loader:
best_test_set_accuracy = train_no_cap(
model,
hp,
memory_safe_data_loader,
test_dl,
optimizer,
criterion,
scheduler,
)
else:
print("Training without differential privacy")
best_test_set_accuracy = train_no_cap(
model,
hp,
train_dl,
test_dl,
optimizer,
criterion,
scheduler,
)
return model_init, model
def train(hp, train_dl, test_dl):
model = WideResNet(
d=hp["wrn_depth"],
@ -604,12 +740,13 @@ def main():
parser.add_argument('--cuda', type=int, help='gpu index', required=False)
parser.add_argument('--epsilon', type=float, help='dp epsilon', required=False, default=None)
parser.add_argument('--m', type=int, help='number of target points', required=True)
parser.add_argument('--k', type=int, help='number of symmetric guesses', required=True)
parser.add_argument('--epochs', type=int, help='number of epochs', required=True)
parser.add_argument('--load', type=Path, help='number of epochs', required=False)
parser.add_argument('--studentraw', action='store_true', help='train a raw student', required=False)
parser.add_argument('--distill', action='store_true', help='train a raw student', required=False)
parser.add_argument('--fast', action='store_true', help='train a the fast model', required=False)
parser.add_argument('--fast', action='store_true', help='train the fast model', required=False)
parser.add_argument('--wrn2', action='store_true', help='Train a groupnormed wrn', required=False)
parser.add_argument('--convnet', action='store_true', help='Train a convnet', required=False)
args = parser.parse_args()
if torch.cuda.is_available() and args.cuda:
@ -629,10 +766,8 @@ def main():
"epsilon": args.epsilon,
"delta": 1e-5,
"norm": args.norm,
"batch_size": 4096,
"batch_size": 50 if args.convnet else 4096,
"epochs": args.epochs,
"k+": args.k,
"k-": args.k,
"p_value": 0.05,
}
@ -652,12 +787,21 @@ def main():
model_init, model_trained, adv_points, adv_labels, S = load(hp, args.load, train_dl)
test_dl = None
elif args.fast:
train_dl, test_dl, _ = get_dataloaders_raw(hp['target_points'])
model_init, model_trained = train_fast(hp)
exit(1)
train_dl, test_dl, train_x, adv_points, adv_labels, S = get_dataloaders_raw(hp['target_points'])
model_init, model_trained = train_fast(hp, train_dl, test_dl, train_x)
else:
train_dl, test_dl, pure_train_dl, adv_points, adv_labels, S = get_dataloaders3(hp['target_points'], hp['batch_size'])
if args.studentraw:
if args.wrn2:
print("=========================")
print("Training wrn2 model from meta")
print("=========================")
model_init, model_trained = train_wrn2(hp, train_dl, test_dl)
elif args.convnet:
print("=========================")
print("Training a simple convnet")
print("=========================")
model_init, model_trained = train_convnet(hp, train_dl, test_dl)
elif args.studentraw:
print("=========================")
print("Training a raw student model")
print("=========================")
@ -711,13 +855,18 @@ def main():
scores.append(((init_loss - trained_loss).item(), is_in))
print(f"Top 10 unsorted scores: {scores[:10]}")
print(f"Btm 10 unsorted scores: {scores[-10:]}")
scores = sorted(scores, key=lambda x: x[0])
print(f"Top 10 sorted scores: {scores[:10]}")
print(f"Btm 10 sorted scores: {scores[-10:]}")
scores = np.array([x[1] for x in scores])
print(scores[:10])
audits = (0, 0, 0, 0)
for k in [10, 20, 50, 100, 200, 300, 500, 800, 1000, 1200, 1400, 1600, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500]:
k_schedule = np.linspace(1, hp['target_points']//2, 40)
k_schedule = np.floor(k_schedule).astype(int)
for k in tqdm(k_schedule):
correct = np.sum(~scores[:k]) + np.sum(scores[-k:])
total = len(scores)

View file

@ -0,0 +1,51 @@
# Name: Peng Cheng
# UIN: 674792652
#
# Code adapted from:
# https://github.com/jameschengpeng/PyTorch-CNN-on-CIFAR10
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=48, kernel_size=(3,3), padding=(1,1))
self.conv2 = nn.Conv2d(in_channels=48, out_channels=96, kernel_size=(3,3), padding=(1,1))
self.conv3 = nn.Conv2d(in_channels=96, out_channels=192, kernel_size=(3,3), padding=(1,1))
self.conv4 = nn.Conv2d(in_channels=192, out_channels=256, kernel_size=(3,3), padding=(1,1))
self.pool = nn.MaxPool2d(2,2)
self.fc1 = nn.Linear(in_features=8*8*256, out_features=512)
self.fc2 = nn.Linear(in_features=512, out_features=64)
self.Dropout = nn.Dropout(0.25)
self.fc3 = nn.Linear(in_features=64, out_features=10)
def forward(self, x):
x = F.relu(self.conv1(x)) #32*32*48
x = F.relu(self.conv2(x)) #32*32*96
x = self.pool(x) #16*16*96
x = self.Dropout(x)
x = F.relu(self.conv3(x)) #16*16*192
x = F.relu(self.conv4(x)) #16*16*256
x = self.pool(x) # 8*8*256
x = self.Dropout(x)
x = x.view(-1, 8*8*256) # reshape x
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.Dropout(x)
x = self.fc3(x)
return x

232
one_run_audit/wrn.py Normal file
View file

@ -0,0 +1,232 @@
"""
Adapted from:
https://github.com/facebookresearch/tan/blob/main/src/models/wideresnet.py
"""
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""
Adapted from timm:
https://github.com/xternalz/WideResNet-pytorch/blob/master/wideresnet.py
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class L2Norm(nn.Module):
def forward(self, x):
return x / x.norm(p=2, dim=1, keepdim=True)
class BasicBlock(nn.Module):
def __init__(self, in_planes, out_planes, stride, nb_groups, order):
super(BasicBlock, self).__init__()
self.order = order
self.bn1 = nn.GroupNorm(nb_groups, in_planes) if nb_groups else nn.Identity()
self.relu1 = nn.ReLU()
self.conv1 = nn.Conv2d(
in_planes, out_planes, kernel_size=3, stride=stride, padding=1
)
self.bn2 = nn.GroupNorm(nb_groups, out_planes) if nb_groups else nn.Identity()
self.relu2 = nn.ReLU()
self.conv2 = nn.Conv2d(
out_planes, out_planes, kernel_size=3, stride=1, padding=1
)
self.equalInOut = in_planes == out_planes
self.bnShortcut = (
(not self.equalInOut)
and nb_groups
and nn.GroupNorm(nb_groups, in_planes)
or (not self.equalInOut)
and nn.Identity()
or None
)
self.convShortcut = (
(not self.equalInOut)
and nn.Conv2d(
in_planes, out_planes, kernel_size=1, stride=stride, padding=0
)
) or None
def forward(self, x):
skip = x
assert self.order in [0, 1, 2, 3]
if self.order == 0: # DM accuracy good
if not self.equalInOut:
skip = self.convShortcut(self.bnShortcut(self.relu1(x)))
out = self.conv1(self.bn1(self.relu1(x)))
out = self.conv2(self.bn2(self.relu2(out)))
elif self.order == 1: # classic accuracy bad
if not self.equalInOut:
skip = self.convShortcut(self.relu1(self.bnShortcut(x)))
out = self.conv1(self.relu1(self.bn1(x)))
out = self.conv2(self.relu2(self.bn2(out)))
elif self.order == 2: # DM IN RESIDUAL, normal other
if not self.equalInOut:
skip = self.convShortcut(self.bnShortcut(self.relu1(x)))
out = self.conv1(self.relu1(self.bn1(x)))
out = self.conv2(self.relu2(self.bn2(out)))
elif self.order == 3: # normal in residualm DM in others
if not self.equalInOut:
skip = self.convShortcut(self.relu1(self.bnShortcut(x)))
out = self.conv1(self.bn1(self.relu1(x)))
out = self.conv2(self.bn2(self.relu2(out)))
return torch.add(skip, out)
class NetworkBlock(nn.Module):
def __init__(
self, nb_layers, in_planes, out_planes, block, stride, nb_groups, order
):
super(NetworkBlock, self).__init__()
self.layer = self._make_layer(
block, in_planes, out_planes, nb_layers, stride, nb_groups, order
)
def _make_layer(
self, block, in_planes, out_planes, nb_layers, stride, nb_groups, order
):
layers = []
for i in range(int(nb_layers)):
layers.append(
block(
i == 0 and in_planes or out_planes,
out_planes,
i == 0 and stride or 1,
nb_groups,
order,
)
)
return nn.Sequential(*layers)
def forward(self, x):
return self.layer(x)
class WideResNet(nn.Module):
def __init__(
self,
depth,
feat_dim,
#num_classes,
widen_factor=1,
nb_groups=16,
init=0,
order1=0,
order2=0,
):
if order1 == 0:
print("order1=0: In the blocks: like in DM, BN on top of relu")
if order1 == 1:
print("order1=1: In the blocks: not like in DM, relu on top of BN")
if order1 == 2:
print(
"order1=2: In the blocks: BN on top of relu in residual (DM), relu on top of BN ortherplace (clqssique)"
)
if order1 == 3:
print(
"order1=3: In the blocks: relu on top of BN in residual (classic), BN on top of relu otherplace (DM)"
)
if order2 == 0:
print("order2=0: outside the blocks: like in DM, BN on top of relu")
if order2 == 1:
print("order2=1: outside the blocks: not like in DM, relu on top of BN")
super(WideResNet, self).__init__()
nChannels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]
assert (depth - 4) % 6 == 0
n = (depth - 4) / 6
block = BasicBlock
# 1st conv before any network block
self.conv1 = nn.Conv2d(3, nChannels[0], kernel_size=3, stride=1, padding=1)
# 1st block
self.block1 = NetworkBlock(
n, nChannels[0], nChannels[1], block, 1, nb_groups, order1
)
# 2nd block
self.block2 = NetworkBlock(
n, nChannels[1], nChannels[2], block, 2, nb_groups, order1
)
# 3rd block
self.block3 = NetworkBlock(
n, nChannels[2], nChannels[3], block, 2, nb_groups, order1
)
# global average pooling and classifier
"""
self.bn1 = nn.GroupNorm(nb_groups, nChannels[3]) if nb_groups else nn.Identity()
self.relu = nn.ReLU()
self.fc = nn.Linear(nChannels[3], num_classes)
"""
self.nChannels = nChannels[3]
self.block4 = nn.Sequential(
nn.Flatten(),
nn.Linear(256 * 8 * 8, 4096, bias=False), # 256 * 6 * 6 if 224 * 224
nn.GroupNorm(16, 4096),
nn.ReLU(inplace=True),
)
# fc7
self.block5 = nn.Sequential(
nn.Linear(4096, 4096, bias=False),
nn.GroupNorm(16, 4096),
nn.ReLU(inplace=True),
)
# fc8
self.block6 =nn.Sequential(
nn.Linear(4096, feat_dim),
L2Norm(),
)
if init == 0: # as in Deep Mind's paper
for m in self.modules():
if isinstance(m, nn.Conv2d):
fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(m.weight)
s = 1 / (max(fan_in, 1)) ** 0.5
nn.init.trunc_normal_(m.weight, std=s)
m.bias.data.zero_()
elif isinstance(m, nn.GroupNorm):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(m.weight)
s = 1 / (max(fan_in, 1)) ** 0.5
nn.init.trunc_normal_(m.weight, std=s)
#m.bias.data.zero_()
if init == 1: # old version
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode="fan_out", nonlinearity="relu"
)
elif isinstance(m, nn.GroupNorm):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
self.order2 = order2
def forward(self, x):
out = self.conv1(x)
out = self.block1(out)
out = self.block2(out)
out = self.block3(out)
out = self.block4(out)
out = self.block5(out)
out = self.block6(out)
if out.ndim == 4:
out = out.mean(dim=-1)
if out.ndim == 3:
out = out.mean(dim=-1)
#out = self.bn1(self.relu(out)) if self.order2 == 0 else self.relu(self.bn1(out))
#out = F.avg_pool2d(out, 8)
#out = out.view(-1, self.nChannels)
return out#self.fc(out)