tensorflow_privacy/research/dp_newton/src/print_results.py

48 lines
1.5 KiB
Python
Raw Permalink Normal View History

# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""print the achievable error of different algorithms"""
# pylint: skip-file
# pyformat: disable
import json
import os
import numpy as np
RESULTS_PATH = './src/results/'
excess_loss = {}
opt_algs = [
'DPGD',
'DN-Hess-add',
'DN-UB-add',
'DN-Hess-clip',
'DN-UB-clip',
'private-newton',
]
for filename in os.listdir(RESULTS_PATH):
f = os.path.join(RESULTS_PATH, filename)
with open(f, encoding='utf-8') as json_file:
data = json.load(json_file)
for alg in data.keys():
if alg in opt_algs:
loss_avg = np.array(data[alg]['loss_avg'])
loss_std = np.array(data[alg]['loss_std'])
clock_time = np.array(data[alg]['clock_time_avg'])
print('optimization algorithm: ', alg)
print('excess loss: ' + str(loss_avg[-1]))
print('run time: ' + str(clock_time[-1]) + '(sec)')
print('-----')