tensorflow_privacy/tutorials/mnist_dpsgd_tutorial.py

135 lines
5.3 KiB
Python
Raw Permalink Normal View History

# Copyright 2020, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Train a CNN on MNIST with differentially private SGD optimizer."""
import time
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
from tensorflow import estimator as tf_estimator
from tensorflow_privacy.privacy.analysis import compute_dp_sgd_privacy_lib
from tensorflow_privacy.privacy.optimizers import dp_optimizer
import mnist_dpsgd_tutorial_common as common
flags.DEFINE_boolean(
'dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
flags.DEFINE_float('learning_rate', .15, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 1.1,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
flags.DEFINE_integer('batch_size', 256, 'Batch size')
flags.DEFINE_integer('epochs', 30, 'Number of epochs')
flags.DEFINE_integer(
'microbatches', 256, 'Number of microbatches '
'(must evenly divide batch_size)')
flags.DEFINE_string('model_dir', None, 'Model directory')
FLAGS = flags.FLAGS
def cnn_model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""Model function for a CNN."""
# Define CNN architecture.
logits = common.get_cnn_model(features)
# Calculate loss as a vector (to support microbatches in DP-SGD).
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits)
# Define mean of loss across minibatch (for reporting through tf.Estimator).
scalar_loss = tf.reduce_mean(input_tensor=vector_loss)
# Configure the training op (for TRAIN mode).
if mode == tf_estimator.ModeKeys.TRAIN:
if FLAGS.dpsgd:
# Use DP version of GradientDescentOptimizer. Other optimizers are
# available in dp_optimizer. Most optimizers inheriting from
# tf.compat.v1.train.Optimizer should be wrappable in differentially
# private counterparts by calling dp_optimizer.optimizer_from_args().
optimizer = dp_optimizer.DPGradientDescentGaussianOptimizer(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=FLAGS.microbatches,
learning_rate=FLAGS.learning_rate)
opt_loss = vector_loss
else:
optimizer = tf.compat.v1.train.GradientDescentOptimizer(
learning_rate=FLAGS.learning_rate)
opt_loss = scalar_loss
global_step = tf.compat.v1.train.get_global_step()
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
# In the following, we pass the mean of the loss (scalar_loss) rather than
# the vector_loss because tf.estimator requires a scalar loss. This is only
# used for evaluation and debugging by tf.estimator. The actual loss being
# minimized is opt_loss defined above and passed to optimizer.minimize().
return tf_estimator.EstimatorSpec(
mode=mode, loss=scalar_loss, train_op=train_op)
# Add evaluation metrics (for EVAL mode).
elif mode == tf_estimator.ModeKeys.EVAL:
eval_metric_ops = {
'accuracy':
tf.compat.v1.metrics.accuracy(
labels=labels, predictions=tf.argmax(input=logits, axis=1))
}
return tf_estimator.EstimatorSpec(
mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
def main(unused_argv):
logging.set_verbosity(logging.INFO)
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
raise ValueError('Number of microbatches should divide evenly batch_size')
# Instantiate the tf.Estimator.
mnist_classifier = tf_estimator.Estimator(
model_fn=cnn_model_fn, model_dir=FLAGS.model_dir)
# Training loop.
steps_per_epoch = 60000 // FLAGS.batch_size
for epoch in range(1, FLAGS.epochs + 1):
start_time = time.time()
# Train the model for one epoch.
mnist_classifier.train(
input_fn=common.make_input_fn('train', FLAGS.batch_size),
steps=steps_per_epoch)
end_time = time.time()
logging.info('Epoch %d time in seconds: %.2f', epoch, end_time - start_time)
# Evaluate the model and print results
eval_results = mnist_classifier.evaluate(
input_fn=common.make_input_fn('test', FLAGS.batch_size, 1))
test_accuracy = eval_results['accuracy']
print('Test accuracy after %d epochs is: %.3f' % (epoch, test_accuracy))
# Compute the privacy budget expended.
if FLAGS.dpsgd:
if FLAGS.noise_multiplier > 0.0:
eps, _ = compute_dp_sgd_privacy_lib.compute_dp_sgd_privacy(
60000, FLAGS.batch_size, FLAGS.noise_multiplier, epoch, 1e-5)
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
else:
print('Trained with DP-SGD but with zero noise.')
else:
print('Trained with vanilla non-private SGD optimizer')
if __name__ == '__main__':
app.run(main)