tensorflow_privacy/privacy/__init__.py

58 lines
2.5 KiB
Python
Raw Normal View History

# Copyright 2019, The TensorFlow Privacy Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TensorFlow Privacy library."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
# pylint: disable=g-import-not-at-top
if hasattr(sys, 'skip_tf_privacy_import'): # Useful for standalone scripts.
pass
else:
from privacy.analysis.privacy_ledger import GaussianSumQueryEntry
from privacy.analysis.privacy_ledger import PrivacyLedger
from privacy.analysis.privacy_ledger import QueryWithLedger
from privacy.analysis.privacy_ledger import SampleEntry
from privacy.dp_query.dp_query import DPQuery
from privacy.dp_query.gaussian_query import GaussianAverageQuery
from privacy.dp_query.gaussian_query import GaussianSumQuery
from privacy.dp_query.nested_query import NestedQuery
from privacy.dp_query.no_privacy_query import NoPrivacyAverageQuery
from privacy.dp_query.no_privacy_query import NoPrivacySumQuery
from privacy.dp_query.normalized_query import NormalizedQuery
from privacy.dp_query.quantile_adaptive_clip_sum_query import QuantileAdaptiveClipSumQuery
from privacy.dp_query.quantile_adaptive_clip_sum_query import QuantileAdaptiveClipAverageQuery
from privacy.optimizers.dp_optimizer import DPAdagradGaussianOptimizer
from privacy.optimizers.dp_optimizer import DPAdagradOptimizer
from privacy.optimizers.dp_optimizer import DPAdamGaussianOptimizer
from privacy.optimizers.dp_optimizer import DPAdamOptimizer
from privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
from privacy.optimizers.dp_optimizer import DPGradientDescentOptimizer
try:
from privacy.bolt_on.models import BoltOnModel
from privacy.bolt_on.optimizers import BoltOn
from privacy.bolt_on.losses import StrongConvexMixin
from privacy.bolt_on.losses import StrongConvexBinaryCrossentropy
from privacy.bolt_on.losses import StrongConvexHuber
except ImportError:
# module `bolt_on` not yet available in this version of TF Privacy
pass