Allow compute_dp_sgd_privacy to be called as library function.

PiperOrigin-RevId: 275966906
This commit is contained in:
Steve Chien 2019-10-21 18:09:41 -07:00 committed by A. Unique TensorFlower
parent 979748e09c
commit 2007aac912
2 changed files with 61 additions and 13 deletions

View file

@ -52,11 +52,6 @@ flags.DEFINE_float('noise_multiplier', None, 'Noise multiplier for DP-SGD')
flags.DEFINE_float('epochs', None, 'Number of epochs (may be fractional)')
flags.DEFINE_float('delta', 1e-6, 'Target delta')
flags.mark_flag_as_required('N')
flags.mark_flag_as_required('batch_size')
flags.mark_flag_as_required('noise_multiplier')
flags.mark_flag_as_required('epochs')
def apply_dp_sgd_analysis(q, sigma, steps, orders, delta):
"""Compute and print results of DP-SGD analysis."""
@ -79,18 +74,30 @@ def apply_dp_sgd_analysis(q, sigma, steps, orders, delta):
print('The privacy estimate is likely to be improved by expanding '
'the set of orders.')
return eps, opt_order
def compute_dp_sgd_privacy(n, batch_size, noise_multiplier, epochs, delta):
"""Compute epsilon based on the given hyperparameters."""
q = batch_size / n # q - the sampling ratio.
if q > 1:
raise app.UsageError('n must be larger than the batch size.')
orders = ([1.25, 1.5, 1.75, 2., 2.25, 2.5, 3., 3.5, 4., 4.5] +
list(range(5, 64)) + [128, 256, 512])
steps = int(math.ceil(epochs * n / batch_size))
return apply_dp_sgd_analysis(q, noise_multiplier, steps, orders, delta)
def main(argv):
del argv # argv is not used.
q = FLAGS.batch_size / FLAGS.N # q - the sampling ratio.
if q > 1:
raise app.UsageError('N must be larger than the batch size.')
orders = ([1.25, 1.5, 1.75, 2., 2.25, 2.5, 3., 3.5, 4., 4.5] +
list(range(5, 64)) + [128, 256, 512])
steps = int(math.ceil(FLAGS.epochs * FLAGS.N / FLAGS.batch_size))
apply_dp_sgd_analysis(q, FLAGS.noise_multiplier, steps, orders, FLAGS.delta)
assert FLAGS.N is not None, 'Flag N is missing.'
assert FLAGS.batch_size is not None, 'Flag batch_size is missing.'
assert FLAGS.noise_multiplier is not None, 'Flag noise_multiplier is missing.'
assert FLAGS.epochs is not None, 'Flag epochs is missing.'
compute_dp_sgd_privacy(FLAGS.N, FLAGS.batch_size, FLAGS.noise_multiplier,
FLAGS.epochs, FLAGS.delta)
if __name__ == '__main__':

View file

@ -0,0 +1,41 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import absltest
from absl.testing import parameterized
from tensorflow_privacy.privacy.analysis import compute_dp_sgd_privacy
class ComputeDpSgdPrivacyTest(parameterized.TestCase):
@parameterized.named_parameters(
('Test0', 60000, 150, 1.3, 15, 1e-5, 0.941870567, 19.0),
('Test1', 100000, 100, 1.0, 30, 1e-7, 1.70928734, 13.0),
('Test2', 100000000, 1024, 0.1, 10, 1e-7, 5907984.81339406, 1.25),
)
def test_compute_dp_sgd_privacy(self, n, batch_size, noise_multiplier, epochs,
delta, expected_eps, expected_order):
eps, order = compute_dp_sgd_privacy.compute_dp_sgd_privacy(
n, batch_size, noise_multiplier, epochs, delta)
self.assertAlmostEqual(eps, expected_eps)
self.assertAlmostEqual(order, expected_order)
if __name__ == '__main__':
absltest.main()