Adds Privacy vs Utility charts to the Privacy Report for a single model.

PiperOrigin-RevId: 331720083
This commit is contained in:
David Marn 2020-09-15 01:30:00 -07:00 committed by A. Unique TensorFlower
parent fc38e3f733
commit 70f9585a24
4 changed files with 126 additions and 16 deletions

View file

@ -123,6 +123,16 @@ class AttackType(enum.Enum):
return '%s' % self.name return '%s' % self.name
class PrivacyMetric(enum.Enum):
"""An enum for the supported privacy risk metrics."""
AUC = 'AUC'
ATTACKER_ADVANTAGE = 'Attacker advantage'
def __str__(self):
"""Returns 'AUC' instead of PrivacyMetric.AUC."""
return '%s' % self.value
def _is_integer_type_array(a): def _is_integer_type_array(a):
return np.issubdtype(a.dtype, np.integer) return np.issubdtype(a.dtype, np.integer)
@ -469,8 +479,8 @@ class AttackResults:
'slice feature': slice_features, 'slice feature': slice_features,
'slice value': slice_values, 'slice value': slice_values,
'attack type': attack_types, 'attack type': attack_types,
'Attacker advantage': advantages, str(PrivacyMetric.ATTACKER_ADVANTAGE): advantages,
'AUC': aucs str(PrivacyMetric.AUC): aucs
}) })
return df return df

View file

@ -28,9 +28,11 @@ from tensorflow import keras
from tensorflow.keras import layers from tensorflow.keras import layers
from tensorflow.keras.utils import to_categorical from tensorflow.keras.utils import to_categorical
from tensorflow_privacy.privacy.membership_inference_attack import membership_inference_attack_new as mia from tensorflow_privacy.privacy.membership_inference_attack import membership_inference_attack_new as mia
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackInputData from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackInputData
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackResults from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackResults
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackType from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackType
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import PrivacyMetric
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import \ from tensorflow_privacy.privacy.membership_inference_attack.data_structures import \
PrivacyReportMetadata PrivacyReportMetadata
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SlicingSpec from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SlicingSpec
@ -109,6 +111,7 @@ def crossentropy(true_labels, predictions):
epoch_results = [] epoch_results = []
# Incrementally train the model and store privacy risk metrics every 10 epochs. # Incrementally train the model and store privacy risk metrics every 10 epochs.
num_epochs = 2
for i in range(1, 6): for i in range(1, 6):
model.fit( model.fit(
training_features, training_features,
@ -116,7 +119,7 @@ for i in range(1, 6):
validation_data=(test_features, to_categorical(test_labels, validation_data=(test_features, to_categorical(test_labels,
num_clusters)), num_clusters)),
batch_size=64, batch_size=64,
epochs=2, epochs=num_epochs,
shuffle=True) shuffle=True)
training_pred = model.predict(training_features) training_pred = model.predict(training_features)
@ -128,7 +131,7 @@ for i in range(1, 6):
np.argmax(training_pred, axis=1)), np.argmax(training_pred, axis=1)),
accuracy_test=metrics.accuracy_score(test_labels, accuracy_test=metrics.accuracy_score(test_labels,
np.argmax(test_pred, axis=1)), np.argmax(test_pred, axis=1)),
epoch_num=2 * i, epoch_num=num_epochs * i,
model_variant_label="default") model_variant_label="default")
attack_results = mia.run_attacks( attack_results = mia.run_attacks(
@ -145,10 +148,13 @@ for i in range(1, 6):
privacy_report_metadata=privacy_report_metadata) privacy_report_metadata=privacy_report_metadata)
epoch_results.append(attack_results) epoch_results.append(attack_results)
# Generate privacy report # Generate privacy reports
epoch_figure = privacy_report.plot_by_epochs(epoch_results, epoch_figure = privacy_report.plot_by_epochs(
["Attacker advantage", "AUC"]) epoch_results, [PrivacyMetric.ATTACKER_ADVANTAGE, PrivacyMetric.AUC])
epoch_figure.show() epoch_figure.show()
privacy_utility_figure = privacy_report.plot_privacy_vs_accuracy_single_model(
epoch_results, [PrivacyMetric.ATTACKER_ADVANTAGE, PrivacyMetric.AUC])
privacy_utility_figure.show()
# Example of saving the results to the file and loading them back. # Example of saving the results to the file and loading them back.
with tempfile.TemporaryDirectory() as tmpdirname: with tempfile.TemporaryDirectory() as tmpdirname:

View file

@ -19,12 +19,57 @@ import matplotlib.pyplot as plt
import pandas as pd import pandas as pd
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackResults from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackResults
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import PrivacyMetric
def plot_by_epochs(results: Iterable[AttackResults], def plot_by_epochs(results: Iterable[AttackResults],
privacy_metrics: Iterable[str]) -> plt.Figure: privacy_metrics: Iterable[PrivacyMetric]) -> plt.Figure:
"""Plots privacy vulnerabilities by epochs.""" """Plots privacy vulnerabilities vs epoch numbers for a single model variant.
In case multiple privacy metrics are specified, the plot will feature
multiple subplots (one subplot per metrics).
Args:
results: AttackResults for the plot
privacy_metrics: List of enumerated privacy metrics that should be plotted.
Returns:
A pyplot figure with privacy vs accuracy plots.
"""
_validate_results(results) _validate_results(results)
all_results_df = _calculate_combined_df_with_metadata(results)
return _generate_subplots(
all_results_df=all_results_df,
x_axis_metric='Epoch',
figure_title='Vulnerability per Epoch',
privacy_metrics=privacy_metrics)
def plot_privacy_vs_accuracy_single_model(
results: Iterable[AttackResults], privacy_metrics: Iterable[PrivacyMetric]):
"""Plots privacy vulnerabilities vs accuracy plots for a single model variant.
In case multiple privacy metrics are specified, the plot will feature
multiple subplots (one subplot per metrics).
Args:
results: AttackResults for the plot
privacy_metrics: List of enumerated privacy metrics that should be plotted.
Returns:
A pyplot figure with privacy vs accuracy plots.
"""
_validate_results(results)
all_results_df = _calculate_combined_df_with_metadata(results)
return _generate_subplots(
all_results_df=all_results_df,
x_axis_metric='Train accuracy',
figure_title='Privacy vs Utility Analysis',
privacy_metrics=privacy_metrics)
def _calculate_combined_df_with_metadata(results: Iterable[AttackResults]):
"""Adds metadata to the dataframe and concats them together."""
all_results_df = None all_results_df = None
for attack_results in results: for attack_results in results:
attack_results_df = attack_results.calculate_pd_dataframe() attack_results_df = attack_results.calculate_pd_dataframe()
@ -32,25 +77,36 @@ def plot_by_epochs(results: Iterable[AttackResults],
== 'entire_dataset'] == 'entire_dataset']
attack_results_df.insert(0, 'Epoch', attack_results_df.insert(0, 'Epoch',
attack_results.privacy_report_metadata.epoch_num) attack_results.privacy_report_metadata.epoch_num)
attack_results_df.insert(
0, 'Train accuracy',
attack_results.privacy_report_metadata.accuracy_train)
if all_results_df is None: if all_results_df is None:
all_results_df = attack_results_df all_results_df = attack_results_df
else: else:
all_results_df = pd.concat([all_results_df, attack_results_df], all_results_df = pd.concat([all_results_df, attack_results_df],
ignore_index=True) ignore_index=True)
return all_results_df
def _generate_subplots(all_results_df: pd.DataFrame, x_axis_metric: str,
figure_title: str,
privacy_metrics: Iterable[PrivacyMetric]):
"""Create one subplot per privacy metric for a specified x_axis_metric."""
fig, axes = plt.subplots(1, len(privacy_metrics)) fig, axes = plt.subplots(1, len(privacy_metrics))
# Set a title for the entire group of subplots.
fig.suptitle(figure_title)
if len(privacy_metrics) == 1: if len(privacy_metrics) == 1:
axes = (axes,) axes = (axes,)
for i, privacy_metric in enumerate(privacy_metrics): for i, privacy_metric in enumerate(privacy_metrics):
attack_types = all_results_df['attack type'].unique() attack_types = all_results_df['attack type'].unique()
for attack_type in attack_types: for attack_type in attack_types:
axes[i].plot( attack_type_results = all_results_df.loc[all_results_df['attack type'] ==
all_results_df.loc[all_results_df['attack type'] == attack_type] attack_type]
['Epoch'], all_results_df.loc[all_results_df['attack type'] == axes[i].plot(attack_type_results[x_axis_metric],
attack_type][privacy_metric]) attack_type_results[str(privacy_metric)])
axes[i].legend(attack_types) axes[i].legend(attack_types)
axes[i].set_xlabel('Epoch') axes[i].set_xlabel(x_axis_metric)
axes[i].set_title('%s for Entire dataset' % privacy_metric) axes[i].set_title('%s for Entire dataset' % str(privacy_metric))
return fig return fig

View file

@ -84,6 +84,8 @@ class PrivacyReportTest(absltest.TestCase):
np.testing.assert_array_equal(auc_data[0], [10, 15]) np.testing.assert_array_equal(auc_data[0], [10, 15])
# Y axis lists AUC values # Y axis lists AUC values
np.testing.assert_array_equal(auc_data[1], [0.5, 1.0]) np.testing.assert_array_equal(auc_data[1], [0.5, 1.0])
# Check the title
self.assertEqual(fig._suptitle.get_text(), 'Vulnerability per Epoch')
def test_multiple_metrics_plot_by_epochs(self): def test_multiple_metrics_plot_by_epochs(self):
fig = privacy_report.plot_by_epochs( fig = privacy_report.plot_by_epochs(
@ -98,6 +100,42 @@ class PrivacyReportTest(absltest.TestCase):
# Y axis lists privacy metrics # Y axis lists privacy metrics
np.testing.assert_array_equal(auc_data[1], [0.5, 1.0]) np.testing.assert_array_equal(auc_data[1], [0.5, 1.0])
np.testing.assert_array_equal(attacker_advantage_data[1], [0, 1.0]) np.testing.assert_array_equal(attacker_advantage_data[1], [0, 1.0])
# Check the title
self.assertEqual(fig._suptitle.get_text(), 'Vulnerability per Epoch')
def test_plot_privacy_vs_accuracy_single_model_no_metadata(self):
# Raise error if metadata is missing
self.assertRaises(ValueError,
privacy_report.plot_privacy_vs_accuracy_single_model,
(self.attack_results_no_metadata,), ['AUC'])
def test_single_metric_plot_privacy_vs_accuracy_single_model(self):
fig = privacy_report.plot_privacy_vs_accuracy_single_model(
(self.results_epoch_10, self.results_epoch_15), ['AUC'])
# extract data from figure.
auc_data = fig.gca().lines[0].get_data()
# X axis lists epoch values
np.testing.assert_array_equal(auc_data[0], [0.4, 0.5])
# Y axis lists AUC values
np.testing.assert_array_equal(auc_data[1], [0.5, 1.0])
# Check the title
self.assertEqual(fig._suptitle.get_text(), 'Privacy vs Utility Analysis')
def test_multiple_metrics_plot_privacy_vs_accuracy_single_model(self):
fig = privacy_report.plot_privacy_vs_accuracy_single_model(
(self.results_epoch_10, self.results_epoch_15),
['AUC', 'Attacker advantage'])
# extract data from figure.
auc_data = fig.axes[0].lines[0].get_data()
attacker_advantage_data = fig.axes[1].lines[0].get_data()
# X axis lists epoch values
np.testing.assert_array_equal(auc_data[0], [0.4, 0.5])
np.testing.assert_array_equal(attacker_advantage_data[0], [0.4, 0.5])
# Y axis lists privacy metrics
np.testing.assert_array_equal(auc_data[1], [0.5, 1.0])
np.testing.assert_array_equal(attacker_advantage_data[1], [0, 1.0])
# Check the title
self.assertEqual(fig._suptitle.get_text(), 'Privacy vs Utility Analysis')
if __name__ == '__main__': if __name__ == '__main__':