RDP for tree aggregation. See "Practical and Private (Deep) Learning without Sampling or Shuffling" https://arxiv.org/abs/2103.00039 for more details. See tests for example usage for calculating epsilon.
PiperOrigin-RevId: 394770205
This commit is contained in:
parent
b7249e6ab2
commit
a20cbf9578
2 changed files with 119 additions and 2 deletions
|
@ -42,6 +42,7 @@ from __future__ import print_function
|
||||||
|
|
||||||
import math
|
import math
|
||||||
import sys
|
import sys
|
||||||
|
from typing import Collection, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from scipy import special
|
from scipy import special
|
||||||
|
@ -397,6 +398,64 @@ def compute_rdp(q, noise_multiplier, steps, orders):
|
||||||
return rdp * steps
|
return rdp * steps
|
||||||
|
|
||||||
|
|
||||||
|
def _compute_rdp_tree(sigma, steps_list, max_participation, alpha):
|
||||||
|
"""Computes RDP of the Tree Aggregation Protocol at order alpha."""
|
||||||
|
if np.isinf(alpha):
|
||||||
|
return np.inf
|
||||||
|
tree_depths = [
|
||||||
|
math.floor(math.log2(steps)) + 1 for steps in steps_list if steps > 0
|
||||||
|
]
|
||||||
|
return alpha * max_participation * sum(tree_depths) / (2 * sigma**2)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_rdp_tree(
|
||||||
|
noise_multiplier: float, steps_list: Collection[float],
|
||||||
|
max_participation: int,
|
||||||
|
orders: Union[float, Collection[float]]) -> Collection[float]:
|
||||||
|
"""Computes RDP of the Tree Aggregation Protocol for Gaussian Mechanism.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
noise_multiplier: A non-negative float representing the ratio of the
|
||||||
|
standard deviation of the Gaussian noise to the l2-sensitivity of the
|
||||||
|
function to which it is added.
|
||||||
|
steps_list: A list of non-negative intergers representing the number of
|
||||||
|
steps between tree restarts.
|
||||||
|
max_participation: A positive integer representing maximum number of times a
|
||||||
|
sample may appear between tree restarts.
|
||||||
|
orders: An array (or a scalar) of RDP orders.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The RDPs at all orders. Can be `np.inf`.
|
||||||
|
"""
|
||||||
|
if noise_multiplier < 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"Noise multiplier must be non-negative, got {noise_multiplier}")
|
||||||
|
elif noise_multiplier == 0:
|
||||||
|
return np.inf
|
||||||
|
|
||||||
|
if max_participation <= 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"Max participation must be positive, got {max_participation}")
|
||||||
|
|
||||||
|
if not steps_list:
|
||||||
|
raise ValueError("List of steps must be non-empty.")
|
||||||
|
|
||||||
|
for steps in steps_list:
|
||||||
|
if steps < 0:
|
||||||
|
raise ValueError(f"List of steps must be non-negative, got {steps_list}")
|
||||||
|
|
||||||
|
if np.isscalar(orders):
|
||||||
|
rdp = _compute_rdp_tree(noise_multiplier, steps_list, max_participation,
|
||||||
|
orders)
|
||||||
|
else:
|
||||||
|
rdp = np.array([
|
||||||
|
_compute_rdp_tree(noise_multiplier, steps_list, max_participation,
|
||||||
|
alpha) for alpha in orders
|
||||||
|
])
|
||||||
|
|
||||||
|
return rdp
|
||||||
|
|
||||||
|
|
||||||
def compute_rdp_sample_without_replacement(q, noise_multiplier, steps, orders):
|
def compute_rdp_sample_without_replacement(q, noise_multiplier, steps, orders):
|
||||||
"""Compute RDP of Gaussian Mechanism using sampling without replacement.
|
"""Compute RDP of Gaussian Mechanism using sampling without replacement.
|
||||||
|
|
||||||
|
|
|
@ -21,7 +21,6 @@ from __future__ import print_function
|
||||||
import math
|
import math
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
from absl.testing import absltest
|
|
||||||
from absl.testing import parameterized
|
from absl.testing import parameterized
|
||||||
from mpmath import exp
|
from mpmath import exp
|
||||||
from mpmath import inf
|
from mpmath import inf
|
||||||
|
@ -265,5 +264,64 @@ class TestGaussianMoments(tf.test.TestCase, parameterized.TestCase):
|
||||||
self.assertLessEqual(delta, delta1 + 1e-300)
|
self.assertLessEqual(delta, delta1 + 1e-300)
|
||||||
|
|
||||||
|
|
||||||
|
class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
|
|
||||||
|
@parameterized.named_parameters(('eps20', 1.13, 19.74), ('eps2', 8.83, 2.04))
|
||||||
|
def test_compute_eps_tree(self, noise_multiplier, eps):
|
||||||
|
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
||||||
|
# This tests is based on the StackOverflow setting in "Practical and
|
||||||
|
# Private (Deep) Learning without Sampling or Shuffling". The calculated
|
||||||
|
# epsilon could be better as the method in this package keeps improving.
|
||||||
|
steps_list, target_delta, max_participation = [1600], 1e-6, 1
|
||||||
|
rdp = rdp_accountant.compute_rdp_tree(noise_multiplier, steps_list,
|
||||||
|
max_participation, orders)
|
||||||
|
new_eps = rdp_accountant.get_privacy_spent(
|
||||||
|
orders, rdp, target_delta=target_delta)[0]
|
||||||
|
self.assertLess(new_eps, eps)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('restart4_max2', [400] * 4, 2),
|
||||||
|
('restart2_max1', [800] * 2, 1),
|
||||||
|
('adaptive_max4', [10, 400, 400, 400, 390], 4),
|
||||||
|
)
|
||||||
|
def test_compute_eps_tree_decreasing(self, steps_list, max_participation):
|
||||||
|
# Test privacy epsilon decreases with noise multiplier increasing when
|
||||||
|
# keeping other parameters the same.
|
||||||
|
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
||||||
|
target_delta = 1e-6
|
||||||
|
prev_eps = rdp_accountant.compute_rdp_tree(0, steps_list, max_participation,
|
||||||
|
orders)
|
||||||
|
for noise_multiplier in [0.1 * x for x in range(1, 100, 5)]:
|
||||||
|
rdp = rdp_accountant.compute_rdp_tree(noise_multiplier, steps_list,
|
||||||
|
max_participation, orders)
|
||||||
|
eps = rdp_accountant.get_privacy_spent(
|
||||||
|
orders, rdp, target_delta=target_delta)[0]
|
||||||
|
self.assertLess(eps, prev_eps)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('negative_noise', -1, [3], 2, 1),
|
||||||
|
('empty_steps', 1, [], 2, 1),
|
||||||
|
('negative_steps', 1, [-3], 2, 1),
|
||||||
|
('zero_participation', 1, [3], 0, 1),
|
||||||
|
('negative_participation', 1, [3], -1, 1),
|
||||||
|
)
|
||||||
|
def test_compute_rdp_tree_raise(self, noise_multiplier, steps_list,
|
||||||
|
max_participation, orders):
|
||||||
|
with self.assertRaisesRegex(ValueError, 'must be'):
|
||||||
|
rdp_accountant.compute_rdp_tree(noise_multiplier, steps_list,
|
||||||
|
max_participation, orders)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('t100n0.1', 100, 0.1),
|
||||||
|
('t1000n0.01', 1000, 0.01),
|
||||||
|
)
|
||||||
|
def test_no_tree_no_sampling(self, total_steps, noise_multiplier):
|
||||||
|
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
||||||
|
tree_rdp = rdp_accountant.compute_rdp_tree(noise_multiplier,
|
||||||
|
[1] * total_steps, 1, orders)
|
||||||
|
rdp = rdp_accountant.compute_rdp(1., noise_multiplier, total_steps, orders)
|
||||||
|
self.assertAllClose(tree_rdp, rdp, rtol=1e-12)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
absltest.main()
|
tf.test.main()
|
||||||
|
|
Loading…
Reference in a new issue