more lint
This commit is contained in:
parent
ed93cf6f44
commit
b1f1c47cae
5 changed files with 35 additions and 25 deletions
|
@ -40,6 +40,7 @@ class StrongConvexMixin:
|
|||
|
||||
def radius(self):
|
||||
"""Radius, R, of the hypothesis space W.
|
||||
|
||||
W is a convex set that forms the hypothesis space.
|
||||
|
||||
Returns:
|
||||
|
@ -114,7 +115,7 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin):
|
|||
|
||||
Args:
|
||||
reg_lambda: Weight regularization constant
|
||||
C: Penalty parameter C of the loss term
|
||||
c_arg: Penalty parameter C of the loss term
|
||||
radius_constant: constant defining the length of the radius
|
||||
delta: delta value in huber loss. When to switch from quadratic to
|
||||
absolute deviation.
|
||||
|
@ -147,7 +148,7 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin):
|
|||
)
|
||||
|
||||
def call(self, y_true, y_pred):
|
||||
"""Computes loss
|
||||
"""Computes loss.
|
||||
|
||||
Args:
|
||||
y_true: Ground truth values. One hot encoded using -1 and 1.
|
||||
|
@ -262,13 +263,13 @@ class StrongConvexBinaryCrossentropy(
|
|||
def call(self, y_true, y_pred):
|
||||
"""Computes loss.
|
||||
|
||||
Args:
|
||||
y_true: Ground truth values.
|
||||
y_pred: The predicted values.
|
||||
Args:
|
||||
y_true: Ground truth values.
|
||||
y_pred: The predicted values.
|
||||
|
||||
Returns:
|
||||
Loss values per sample.
|
||||
"""
|
||||
Returns:
|
||||
Loss values per sample.
|
||||
"""
|
||||
loss = super(StrongConvexBinaryCrossentropy, self).call(y_true, y_pred)
|
||||
loss = loss * self.C
|
||||
return loss
|
||||
|
|
|
@ -369,11 +369,11 @@ class HuberTests(keras_parameterized.TestCase):
|
|||
def test_calculation(self, logits, y_true, delta, result):
|
||||
"""Test the call method to ensure it returns the correct value.
|
||||
|
||||
Args:
|
||||
logits: unscaled output of model
|
||||
y_true: label
|
||||
delta:
|
||||
result: correct loss calculation value
|
||||
Args:
|
||||
logits: unscaled output of model
|
||||
y_true: label
|
||||
delta:
|
||||
result: correct loss calculation value
|
||||
"""
|
||||
logits = tf.Variable(logits, False, dtype=tf.float32)
|
||||
y_true = tf.Variable(y_true, False, dtype=tf.float32)
|
||||
|
|
|
@ -80,13 +80,13 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
|||
**kwargs): # pylint: disable=arguments-differ
|
||||
"""See super class. Default optimizer used in Bolton method is SGD.
|
||||
|
||||
Args:
|
||||
optimizer: The optimizer to use. This will be automatically wrapped
|
||||
with the Bolton Optimizer.
|
||||
loss: The loss function to use. Must be a StrongConvex loss (extend the
|
||||
StrongConvexMixin).
|
||||
kernel_initializer: The kernel initializer to use for the single layer.
|
||||
kwargs: kwargs to keras Model.compile. See super.
|
||||
Args:
|
||||
optimizer: The optimizer to use. This will be automatically wrapped
|
||||
with the Bolton Optimizer.
|
||||
loss: The loss function to use. Must be a StrongConvex loss (extend the
|
||||
StrongConvexMixin).
|
||||
kernel_initializer: The kernel initializer to use for the single layer.
|
||||
kwargs: kwargs to keras Model.compile. See super.
|
||||
"""
|
||||
if not isinstance(loss, StrongConvexMixin):
|
||||
raise ValueError('loss function must be a Strongly Convex and therefore '
|
||||
|
@ -200,6 +200,7 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
|||
Bolton paper for more description.
|
||||
n_samples: number of individual samples in x
|
||||
steps_per_epoch:
|
||||
**kwargs: **kwargs
|
||||
"""
|
||||
if class_weight is None:
|
||||
class_weight = self.calculate_class_weights(class_weight)
|
||||
|
|
|
@ -275,7 +275,8 @@ def _do_fit(n_samples,
|
|||
loss: instance of TestLoss
|
||||
distribution: distribution to get noise from.
|
||||
|
||||
Returns: BoltonModel instsance
|
||||
Returns:
|
||||
BoltonModel instsance
|
||||
"""
|
||||
clf = models.BoltonModel(n_outputs)
|
||||
clf.compile(optimizer, loss)
|
||||
|
|
|
@ -184,7 +184,7 @@ class Bolton(optimizer_v2.OptimizerV2):
|
|||
|
||||
Args:
|
||||
input_dim: the input dimensionality for the weights
|
||||
output_dim the output dimensionality for the weights
|
||||
output_dim: the output dimensionality for the weights
|
||||
|
||||
Returns:
|
||||
Noise in shape of layer's weights to be added to the weights.
|
||||
|
@ -236,7 +236,8 @@ class Bolton(optimizer_v2.OptimizerV2):
|
|||
Args:
|
||||
name:
|
||||
|
||||
Returns: attribute from Bolton if specified to come from self, else
|
||||
Returns:
|
||||
attribute from Bolton if specified to come from self, else
|
||||
from _internal_optimizer.
|
||||
"""
|
||||
if name == '_private_attributes' or name in self._private_attributes:
|
||||
|
@ -254,7 +255,7 @@ class Bolton(optimizer_v2.OptimizerV2):
|
|||
)
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
""" Set attribute to self instance if its the internal optimizer.
|
||||
"""Set attribute to self instance if its the internal optimizer.
|
||||
|
||||
Reroute everything else to the _internal_optimizer.
|
||||
|
||||
|
@ -333,6 +334,9 @@ class Bolton(optimizer_v2.OptimizerV2):
|
|||
tensor with dim == n_classes.
|
||||
n_samples: number of rows/individual samples in the training set
|
||||
batch_size: batch size used.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
if epsilon <= 0:
|
||||
raise ValueError('Detected epsilon: {0}. '
|
||||
|
@ -354,8 +358,8 @@ class Bolton(optimizer_v2.OptimizerV2):
|
|||
|
||||
def __exit__(self, *args):
|
||||
"""Exit call from with statement.
|
||||
used to
|
||||
|
||||
Used to:
|
||||
1.reset the model and fit parameters passed to the optimizer
|
||||
to enable the Bolton Privacy guarantees. These are reset to ensure
|
||||
that any future calls to fit with the same instance of the optimizer
|
||||
|
@ -363,6 +367,9 @@ class Bolton(optimizer_v2.OptimizerV2):
|
|||
|
||||
2.call post-fit methods normalizing/projecting the model weights and
|
||||
adding noise to the weights.
|
||||
|
||||
Args:
|
||||
*args: *args
|
||||
"""
|
||||
self.project_weights_to_r(True)
|
||||
for layer in self.layers:
|
||||
|
|
Loading…
Reference in a new issue