tensorflow_privacy/privacy/bolton/losses_test.py
2019-07-29 22:15:52 +00:00

431 lines
13 KiB
Python

# Copyright 2019, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Unit testing for losses."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from contextlib import contextmanager
from io import StringIO
import sys
from absl.testing import parameterized
import tensorflow as tf
from tensorflow.python.framework import test_util
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras.regularizers import L1L2
from privacy.bolton.losses import StrongConvexBinaryCrossentropy
from privacy.bolton.losses import StrongConvexHuber
from privacy.bolton.losses import StrongConvexMixin
@contextmanager
def captured_output():
"""Capture std_out and std_err within context."""
new_out, new_err = StringIO(), StringIO()
old_out, old_err = sys.stdout, sys.stderr
try:
sys.stdout, sys.stderr = new_out, new_err
yield sys.stdout, sys.stderr
finally:
sys.stdout, sys.stderr = old_out, old_err
class StrongConvexMixinTests(keras_parameterized.TestCase):
"""Tests for the StrongConvexMixin."""
@parameterized.named_parameters([
{'testcase_name': 'beta not implemented',
'fn': 'beta',
'args': [1]},
{'testcase_name': 'gamma not implemented',
'fn': 'gamma',
'args': []},
{'testcase_name': 'lipchitz not implemented',
'fn': 'lipchitz_constant',
'args': [1]},
{'testcase_name': 'radius not implemented',
'fn': 'radius',
'args': []},
])
def test_not_implemented(self, fn, args):
"""Test that the given fn's are not implemented on the mixin.
Args:
fn: fn on Mixin to test
args: arguments to fn of Mixin
"""
with self.assertRaises(NotImplementedError):
loss = StrongConvexMixin()
getattr(loss, fn, None)(*args)
@parameterized.named_parameters([
{'testcase_name': 'radius not implemented',
'fn': 'kernel_regularizer',
'args': []},
])
def test_return_none(self, fn, args):
"""Test that fn of Mixin returns None.
Args:
fn: fn of Mixin to test
args: arguments to fn of Mixin
"""
loss = StrongConvexMixin()
ret = getattr(loss, fn, None)(*args)
self.assertEqual(ret, None)
class BinaryCrossesntropyTests(keras_parameterized.TestCase):
"""tests for BinaryCrossesntropy StrongConvex loss."""
@parameterized.named_parameters([
{'testcase_name': 'normal',
'reg_lambda': 1,
'C': 1,
'radius_constant': 1
}, # pylint: disable=invalid-name
])
def test_init_params(self, reg_lambda, C, radius_constant):
"""Test initialization for given arguments.
Args:
reg_lambda: initialization value for reg_lambda arg
C: initialization value for C arg
radius_constant: initialization value for radius_constant arg
"""
# test valid domains for each variable
loss = StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant)
self.assertIsInstance(loss, StrongConvexBinaryCrossentropy)
@parameterized.named_parameters([
{'testcase_name': 'negative c',
'reg_lambda': 1,
'C': -1,
'radius_constant': 1
},
{'testcase_name': 'negative radius',
'reg_lambda': 1,
'C': 1,
'radius_constant': -1
},
{'testcase_name': 'negative lambda',
'reg_lambda': -1,
'C': 1,
'radius_constant': 1
}, # pylint: disable=invalid-name
])
def test_bad_init_params(self, reg_lambda, C, radius_constant):
"""Test invalid domain for given params. Should return ValueError.
Args:
reg_lambda: initialization value for reg_lambda arg
C: initialization value for C arg
radius_constant: initialization value for radius_constant arg
"""
# test valid domains for each variable
with self.assertRaises(ValueError):
StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant)
@test_util.run_all_in_graph_and_eager_modes
@parameterized.named_parameters([
# [] for compatibility with tensorflow loss calculation
{'testcase_name': 'both positive',
'logits': [10000],
'y_true': [1],
'result': 0,
},
{'testcase_name': 'positive gradient negative logits',
'logits': [-10000],
'y_true': [1],
'result': 10000,
},
{'testcase_name': 'positivee gradient positive logits',
'logits': [10000],
'y_true': [0],
'result': 10000,
},
{'testcase_name': 'both negative',
'logits': [-10000],
'y_true': [0],
'result': 0
},
])
def test_calculation(self, logits, y_true, result):
"""Test the call method to ensure it returns the correct value.
Args:
logits: unscaled output of model
y_true: label
result: correct loss calculation value
"""
logits = tf.Variable(logits, False, dtype=tf.float32)
y_true = tf.Variable(y_true, False, dtype=tf.float32)
loss = StrongConvexBinaryCrossentropy(0.00001, 1, 1)
loss = loss(y_true, logits)
self.assertEqual(loss.numpy(), result)
@parameterized.named_parameters([
{'testcase_name': 'beta',
'init_args': [1, 1, 1],
'fn': 'beta',
'args': [1],
'result': tf.constant(2, dtype=tf.float32)
},
{'testcase_name': 'gamma',
'fn': 'gamma',
'init_args': [1, 1, 1],
'args': [],
'result': tf.constant(1, dtype=tf.float32),
},
{'testcase_name': 'lipchitz constant',
'fn': 'lipchitz_constant',
'init_args': [1, 1, 1],
'args': [1],
'result': tf.constant(2, dtype=tf.float32),
},
{'testcase_name': 'kernel regularizer',
'fn': 'kernel_regularizer',
'init_args': [1, 1, 1],
'args': [],
'result': L1L2(l2=0.5),
},
])
def test_fns(self, init_args, fn, args, result):
"""Test that fn of BinaryCrossentropy loss returns the correct result.
Args:
init_args: init values for loss instance
fn: the fn to test
args: the arguments to above function
result: the correct result from the fn
"""
loss = StrongConvexBinaryCrossentropy(*init_args)
expected = getattr(loss, fn, lambda: 'fn not found')(*args)
if hasattr(expected, 'numpy') and hasattr(result, 'numpy'): # both tensor
expected = expected.numpy()
result = result.numpy()
if hasattr(expected, 'l2') and hasattr(result, 'l2'): # both l2 regularizer
expected = expected.l2
result = result.l2
self.assertEqual(expected, result)
@parameterized.named_parameters([
{'testcase_name': 'label_smoothing',
'init_args': [1, 1, 1, True, 0.1],
'fn': None,
'args': None,
'print_res': 'The impact of label smoothing on privacy is unknown.'
},
])
def test_prints(self, init_args, fn, args, print_res):
"""Test logger warning from StrongConvexBinaryCrossentropy.
Args:
init_args: arguments to init the object with.
fn: function to test
args: arguments to above function
print_res: print result that should have been printed.
"""
with captured_output() as (out, err): # pylint: disable=unused-variable
loss = StrongConvexBinaryCrossentropy(*init_args)
if fn is not None:
getattr(loss, fn, lambda *arguments: print('error'))(*args)
self.assertRegexMatch(err.getvalue().strip(), [print_res])
class HuberTests(keras_parameterized.TestCase):
"""tests for BinaryCrossesntropy StrongConvex loss."""
@parameterized.named_parameters([
{'testcase_name': 'normal',
'reg_lambda': 1,
'c': 1,
'radius_constant': 1,
'delta': 1,
},
])
def test_init_params(self, reg_lambda, c, radius_constant, delta):
"""Test initialization for given arguments.
Args:
reg_lambda: initialization value for reg_lambda arg
c: initialization value for C arg
radius_constant: initialization value for radius_constant arg
delta: the delta parameter for the huber loss
"""
# test valid domains for each variable
loss = StrongConvexHuber(reg_lambda, c, radius_constant, delta)
self.assertIsInstance(loss, StrongConvexHuber)
@parameterized.named_parameters([
{'testcase_name': 'negative c',
'reg_lambda': 1,
'c': -1,
'radius_constant': 1,
'delta': 1
},
{'testcase_name': 'negative radius',
'reg_lambda': 1,
'c': 1,
'radius_constant': -1,
'delta': 1
},
{'testcase_name': 'negative lambda',
'reg_lambda': -1,
'c': 1,
'radius_constant': 1,
'delta': 1
},
{'testcase_name': 'negative delta',
'reg_lambda': 1,
'c': 1,
'radius_constant': 1,
'delta': -1
},
])
def test_bad_init_params(self, reg_lambda, c, radius_constant, delta):
"""Test invalid domain for given params. Should return ValueError.
Args:
reg_lambda: initialization value for reg_lambda arg
c: initialization value for C arg
radius_constant: initialization value for radius_constant arg
delta: the delta parameter for the huber loss
"""
# test valid domains for each variable
with self.assertRaises(ValueError):
StrongConvexHuber(reg_lambda, c, radius_constant, delta)
# test the bounds and test varied delta's
@test_util.run_all_in_graph_and_eager_modes
@parameterized.named_parameters([
{'testcase_name': 'delta=1,y_true=1 z>1+h decision boundary',
'logits': 2.1,
'y_true': 1,
'delta': 1,
'result': 0,
},
{'testcase_name': 'delta=1,y_true=1 z<1+h decision boundary',
'logits': 1.9,
'y_true': 1,
'delta': 1,
'result': 0.01*0.25,
},
{'testcase_name': 'delta=1,y_true=1 1-z< h decision boundary',
'logits': 0.1,
'y_true': 1,
'delta': 1,
'result': 1.9**2 * 0.25,
},
{'testcase_name': 'delta=1,y_true=1 z < 1-h decision boundary',
'logits': -0.1,
'y_true': 1,
'delta': 1,
'result': 1.1,
},
{'testcase_name': 'delta=2,y_true=1 z>1+h decision boundary',
'logits': 3.1,
'y_true': 1,
'delta': 2,
'result': 0,
},
{'testcase_name': 'delta=2,y_true=1 z<1+h decision boundary',
'logits': 2.9,
'y_true': 1,
'delta': 2,
'result': 0.01*0.125,
},
{'testcase_name': 'delta=2,y_true=1 1-z < h decision boundary',
'logits': 1.1,
'y_true': 1,
'delta': 2,
'result': 1.9**2 * 0.125,
},
{'testcase_name': 'delta=2,y_true=1 z < 1-h decision boundary',
'logits': -1.1,
'y_true': 1,
'delta': 2,
'result': 2.1,
},
{'testcase_name': 'delta=1,y_true=-1 z>1+h decision boundary',
'logits': -2.1,
'y_true': -1,
'delta': 1,
'result': 0,
},
])
def test_calculation(self, logits, y_true, delta, result):
"""Test the call method to ensure it returns the correct value.
Args:
logits: unscaled output of model
y_true: label
delta:
result: correct loss calculation value
"""
logits = tf.Variable(logits, False, dtype=tf.float32)
y_true = tf.Variable(y_true, False, dtype=tf.float32)
loss = StrongConvexHuber(0.00001, 1, 1, delta)
loss = loss(y_true, logits)
self.assertAllClose(loss.numpy(), result)
@parameterized.named_parameters([
{'testcase_name': 'beta',
'init_args': [1, 1, 1, 1],
'fn': 'beta',
'args': [1],
'result': tf.Variable(1.5, dtype=tf.float32)
},
{'testcase_name': 'gamma',
'fn': 'gamma',
'init_args': [1, 1, 1, 1],
'args': [],
'result': tf.Variable(1, dtype=tf.float32),
},
{'testcase_name': 'lipchitz constant',
'fn': 'lipchitz_constant',
'init_args': [1, 1, 1, 1],
'args': [1],
'result': tf.Variable(2, dtype=tf.float32),
},
{'testcase_name': 'kernel regularizer',
'fn': 'kernel_regularizer',
'init_args': [1, 1, 1, 1],
'args': [],
'result': L1L2(l2=0.5),
},
])
def test_fns(self, init_args, fn, args, result):
"""Test that fn of BinaryCrossentropy loss returns the correct result.
Args:
init_args: init values for loss instance
fn: the fn to test
args: the arguments to above function
result: the correct result from the fn
"""
loss = StrongConvexHuber(*init_args)
expected = getattr(loss, fn, lambda: 'fn not found')(*args)
if hasattr(expected, 'numpy') and hasattr(result, 'numpy'): # both tensor
expected = expected.numpy()
result = result.numpy()
if hasattr(expected, 'l2') and hasattr(result, 'l2'): # both l2 regularizer
expected = expected.l2
result = result.l2
self.assertEqual(expected, result)
if __name__ == '__main__':
tf.test.main()