Fix usage of logging API.

PiperOrigin-RevId: 463123944
This commit is contained in:
Michael Reneer 2022-07-25 10:48:07 -07:00 committed by A. Unique TensorFlower
parent 4cb0a11c4b
commit d16f020329
5 changed files with 5 additions and 10 deletions

View file

@ -92,8 +92,7 @@ def load_cifar10():
def main(unused_argv): def main(unused_argv):
logger = tf.get_logger() logging.set_verbosity(logging.ERROR)
logger.set_level(logging.ERROR)
# Load training and test data. # Load training and test data.
x_train, y_train, x_test, y_test = load_cifar10() x_train, y_train, x_test, y_test = load_cifar10()

View file

@ -163,8 +163,7 @@ def compute_epsilon(steps):
def main(unused_argv): def main(unused_argv):
logger = tf.get_logger() logging.set_verbosity(logging.INFO)
logger.set_level(logging.INFO)
if FLAGS.batch_size % FLAGS.microbatches != 0: if FLAGS.batch_size % FLAGS.microbatches != 0:
raise ValueError('Number of microbatches should divide evenly batch_size') raise ValueError('Number of microbatches should divide evenly batch_size')

View file

@ -146,8 +146,7 @@ def load_mnist():
def main(unused_argv): def main(unused_argv):
logger = tf.get_logger() logging.set_verbosity(logging.INFO)
logger.set_level(logging.INFO)
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0: if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
raise ValueError('Number of microbatches should divide evenly batch_size') raise ValueError('Number of microbatches should divide evenly batch_size')

View file

@ -183,8 +183,7 @@ def print_privacy_guarantees(epochs, batch_size, samples, noise_multiplier):
def main(unused_argv): def main(unused_argv):
logger = tf.get_logger() logging.set_verbosity(logging.INFO)
logger.set_level(logging.INFO)
if FLAGS.data_l2_norm <= 0: if FLAGS.data_l2_norm <= 0:
raise ValueError('data_l2_norm must be positive.') raise ValueError('data_l2_norm must be positive.')

View file

@ -89,8 +89,7 @@ def load_mnist():
def main(unused_argv): def main(unused_argv):
logger = tf.get_logger() logging.set_verbosity(logging.INFO)
logger.set_level(logging.INFO)
# Load training and test data. # Load training and test data.
train_data, train_labels, test_data, test_labels = load_mnist() train_data, train_labels, test_data, test_labels = load_mnist()