Changes for API docstrings for TF.org:
(1) Hide documentation for superclass methods in DPModel. (2) Make compute_dp_sgd_privacy visible. PiperOrigin-RevId: 377553548
This commit is contained in:
parent
385fefc85e
commit
eaf9fbf969
3 changed files with 41 additions and 1 deletions
|
@ -19,6 +19,9 @@ import os
|
||||||
from absl import app
|
from absl import app
|
||||||
from absl import flags
|
from absl import flags
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
from tensorflow_docs.api_generator import doc_controls
|
||||||
from tensorflow_docs.api_generator import generate_lib
|
from tensorflow_docs.api_generator import generate_lib
|
||||||
from tensorflow_docs.api_generator import public_api
|
from tensorflow_docs.api_generator import public_api
|
||||||
|
|
||||||
|
@ -44,10 +47,35 @@ PROJECT_SHORT_NAME = 'tf_privacy'
|
||||||
PROJECT_FULL_NAME = 'TensorFlow Privacy'
|
PROJECT_FULL_NAME = 'TensorFlow Privacy'
|
||||||
|
|
||||||
|
|
||||||
|
def _hide_layer_and_module_methods():
|
||||||
|
"""Hide methods and properties defined in the base classes of keras layers."""
|
||||||
|
# __dict__ only sees attributes defined in *this* class, not on parent classes
|
||||||
|
# Needed to ignore redudant subclass documentation
|
||||||
|
model_contents = list(tf.keras.Model.__dict__.items())
|
||||||
|
layer_contents = list(tf.keras.layers.Layer.__dict__.items())
|
||||||
|
module_contents = list(tf.Module.__dict__.items())
|
||||||
|
|
||||||
|
for name, obj in model_contents + layer_contents + module_contents:
|
||||||
|
if name == '__init__':
|
||||||
|
continue
|
||||||
|
|
||||||
|
if isinstance(obj, property):
|
||||||
|
obj = obj.fget
|
||||||
|
|
||||||
|
if isinstance(obj, (staticmethod, classmethod)):
|
||||||
|
obj = obj.__func__
|
||||||
|
|
||||||
|
try:
|
||||||
|
doc_controls.do_not_doc_in_subclasses(obj)
|
||||||
|
except AttributeError:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
def gen_api_docs():
|
def gen_api_docs():
|
||||||
"""Generates api docs for the tensorflow docs package."""
|
"""Generates api docs for the tensorflow docs package."""
|
||||||
output_dir = FLAGS.output_dir
|
output_dir = FLAGS.output_dir
|
||||||
|
|
||||||
|
_hide_layer_and_module_methods()
|
||||||
doc_generator = generate_lib.DocGenerator(
|
doc_generator = generate_lib.DocGenerator(
|
||||||
root_title=PROJECT_FULL_NAME,
|
root_title=PROJECT_FULL_NAME,
|
||||||
py_modules=[(PROJECT_SHORT_NAME, tf_privacy)],
|
py_modules=[(PROJECT_SHORT_NAME, tf_privacy)],
|
||||||
|
|
|
@ -27,6 +27,7 @@ if hasattr(sys, 'skip_tf_privacy_import'): # Useful for standalone scripts.
|
||||||
pass
|
pass
|
||||||
else:
|
else:
|
||||||
# Analysis
|
# Analysis
|
||||||
|
from tensorflow_privacy.privacy.analysis.compute_dp_sgd_privacy_lib import compute_dp_sgd_privacy
|
||||||
from tensorflow_privacy.privacy.analysis.privacy_ledger import GaussianSumQueryEntry
|
from tensorflow_privacy.privacy.analysis.privacy_ledger import GaussianSumQueryEntry
|
||||||
from tensorflow_privacy.privacy.analysis.privacy_ledger import PrivacyLedger
|
from tensorflow_privacy.privacy.analysis.privacy_ledger import PrivacyLedger
|
||||||
from tensorflow_privacy.privacy.analysis.privacy_ledger import QueryWithLedger
|
from tensorflow_privacy.privacy.analysis.privacy_ledger import QueryWithLedger
|
||||||
|
|
|
@ -55,7 +55,18 @@ def apply_dp_sgd_analysis(q, sigma, steps, orders, delta):
|
||||||
|
|
||||||
|
|
||||||
def compute_dp_sgd_privacy(n, batch_size, noise_multiplier, epochs, delta):
|
def compute_dp_sgd_privacy(n, batch_size, noise_multiplier, epochs, delta):
|
||||||
"""Compute epsilon based on the given hyperparameters."""
|
"""Compute epsilon based on the given hyperparameters.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
n: Number of examples in the training data.
|
||||||
|
batch_size: Batch size used in training.
|
||||||
|
noise_multiplier: Noise multiplier used in training.
|
||||||
|
epochs: Number of epochs in training.
|
||||||
|
delta: Value of delta for which to compute epsilon.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Value of epsilon corresponding to input hyperparameters.
|
||||||
|
"""
|
||||||
q = batch_size / n # q - the sampling ratio.
|
q = batch_size / n # q - the sampling ratio.
|
||||||
if q > 1:
|
if q > 1:
|
||||||
raise app.UsageError('n must be larger than the batch size.')
|
raise app.UsageError('n must be larger than the batch size.')
|
||||||
|
|
Loading…
Reference in a new issue