Changes for API docstrings for TF.org:

(1) Hide documentation for superclass methods in DPModel.
(2) Make compute_dp_sgd_privacy visible.

PiperOrigin-RevId: 377553548
This commit is contained in:
Steve Chien 2021-06-04 11:30:58 -07:00 committed by A. Unique TensorFlower
parent 385fefc85e
commit eaf9fbf969
3 changed files with 41 additions and 1 deletions

View file

@ -19,6 +19,9 @@ import os
from absl import app
from absl import flags
import tensorflow as tf
from tensorflow_docs.api_generator import doc_controls
from tensorflow_docs.api_generator import generate_lib
from tensorflow_docs.api_generator import public_api
@ -44,10 +47,35 @@ PROJECT_SHORT_NAME = 'tf_privacy'
PROJECT_FULL_NAME = 'TensorFlow Privacy'
def _hide_layer_and_module_methods():
"""Hide methods and properties defined in the base classes of keras layers."""
# __dict__ only sees attributes defined in *this* class, not on parent classes
# Needed to ignore redudant subclass documentation
model_contents = list(tf.keras.Model.__dict__.items())
layer_contents = list(tf.keras.layers.Layer.__dict__.items())
module_contents = list(tf.Module.__dict__.items())
for name, obj in model_contents + layer_contents + module_contents:
if name == '__init__':
continue
if isinstance(obj, property):
obj = obj.fget
if isinstance(obj, (staticmethod, classmethod)):
obj = obj.__func__
try:
doc_controls.do_not_doc_in_subclasses(obj)
except AttributeError:
pass
def gen_api_docs():
"""Generates api docs for the tensorflow docs package."""
output_dir = FLAGS.output_dir
_hide_layer_and_module_methods()
doc_generator = generate_lib.DocGenerator(
root_title=PROJECT_FULL_NAME,
py_modules=[(PROJECT_SHORT_NAME, tf_privacy)],

View file

@ -27,6 +27,7 @@ if hasattr(sys, 'skip_tf_privacy_import'): # Useful for standalone scripts.
pass
else:
# Analysis
from tensorflow_privacy.privacy.analysis.compute_dp_sgd_privacy_lib import compute_dp_sgd_privacy
from tensorflow_privacy.privacy.analysis.privacy_ledger import GaussianSumQueryEntry
from tensorflow_privacy.privacy.analysis.privacy_ledger import PrivacyLedger
from tensorflow_privacy.privacy.analysis.privacy_ledger import QueryWithLedger

View file

@ -55,7 +55,18 @@ def apply_dp_sgd_analysis(q, sigma, steps, orders, delta):
def compute_dp_sgd_privacy(n, batch_size, noise_multiplier, epochs, delta):
"""Compute epsilon based on the given hyperparameters."""
"""Compute epsilon based on the given hyperparameters.
Args:
n: Number of examples in the training data.
batch_size: Batch size used in training.
noise_multiplier: Noise multiplier used in training.
epochs: Number of epochs in training.
delta: Value of delta for which to compute epsilon.
Returns:
Value of epsilon corresponding to input hyperparameters.
"""
q = batch_size / n # q - the sampling ratio.
if q > 1:
raise app.UsageError('n must be larger than the batch size.')