70 lines
2.2 KiB
Python
70 lines
2.2 KiB
Python
# Copyright 2021 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# Modified copy by Chenxiang Zhang (orientino) of the original:
|
|
# https://github.com/tensorflow/privacy/tree/master/research/mi_lira_2021
|
|
|
|
|
|
import argparse
|
|
import multiprocessing as mp
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
from torchvision.datasets import CIFAR10
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--savedir", default="exp/cifar10", type=str)
|
|
args = parser.parse_args()
|
|
|
|
|
|
def load_one(path):
|
|
"""
|
|
This loads a logits and converts it to a scored prediction.
|
|
"""
|
|
opredictions = np.load(os.path.join(path, "logits.npy")) # [n_examples, n_augs, n_classes]
|
|
|
|
# Be exceptionally careful.
|
|
# Numerically stable everything, as described in the paper.
|
|
predictions = opredictions - np.max(opredictions, axis=-1, keepdims=True)
|
|
predictions = np.array(np.exp(predictions), dtype=np.float64)
|
|
predictions = predictions / np.sum(predictions, axis=-1, keepdims=True)
|
|
|
|
labels = get_labels() # TODO generalize this
|
|
|
|
COUNT = predictions.shape[0]
|
|
y_true = predictions[np.arange(COUNT), :, labels[:COUNT]]
|
|
|
|
print("mean acc", np.mean(predictions[:, 0, :].argmax(1) == labels[:COUNT]))
|
|
|
|
predictions[np.arange(COUNT), :, labels[:COUNT]] = 0
|
|
y_wrong = np.sum(predictions, axis=-1)
|
|
|
|
logit = np.log(y_true + 1e-45) - np.log(y_wrong + 1e-45)
|
|
np.save(os.path.join(path, "scores.npy"), logit)
|
|
|
|
|
|
def get_labels():
|
|
datadir = Path().home() / "opt/data/cifar"
|
|
train_ds = CIFAR10(root=datadir, train=True, download=True)
|
|
return np.array(train_ds.targets)
|
|
|
|
|
|
def load_stats():
|
|
with mp.Pool(8) as p:
|
|
p.map(load_one, [os.path.join(args.savedir, x) for x in os.listdir(args.savedir)])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
load_stats()
|