mia_on_model_distillation/lira-pytorch/score.py

70 lines
2.2 KiB
Python

# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modified copy by Chenxiang Zhang (orientino) of the original:
# https://github.com/tensorflow/privacy/tree/master/research/mi_lira_2021
import argparse
import multiprocessing as mp
import os
from pathlib import Path
import numpy as np
from torchvision.datasets import CIFAR10
parser = argparse.ArgumentParser()
parser.add_argument("--savedir", default="exp/cifar10", type=str)
args = parser.parse_args()
def load_one(path):
"""
This loads a logits and converts it to a scored prediction.
"""
opredictions = np.load(os.path.join(path, "logits.npy")) # [n_examples, n_augs, n_classes]
# Be exceptionally careful.
# Numerically stable everything, as described in the paper.
predictions = opredictions - np.max(opredictions, axis=-1, keepdims=True)
predictions = np.array(np.exp(predictions), dtype=np.float64)
predictions = predictions / np.sum(predictions, axis=-1, keepdims=True)
labels = get_labels() # TODO generalize this
COUNT = predictions.shape[0]
y_true = predictions[np.arange(COUNT), :, labels[:COUNT]]
print("mean acc", np.mean(predictions[:, 0, :].argmax(1) == labels[:COUNT]))
predictions[np.arange(COUNT), :, labels[:COUNT]] = 0
y_wrong = np.sum(predictions, axis=-1)
logit = np.log(y_true + 1e-45) - np.log(y_wrong + 1e-45)
np.save(os.path.join(path, "scores.npy"), logit)
def get_labels():
datadir = Path().home() / "opt/data/cifar"
train_ds = CIFAR10(root=datadir, train=True, download=True)
return np.array(train_ds.targets)
def load_stats():
with mp.Pool(8) as p:
p.map(load_one, [os.path.join(args.savedir, x) for x in os.listdir(args.savedir)])
if __name__ == "__main__":
load_stats()