tensorflow_privacy/privacy/optimizers/dp_optimizer.py

240 lines
9.5 KiB
Python
Raw Normal View History

# Copyright 2018, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Differentially private optimizers for TensorFlow."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from distutils.version import LooseVersion
import tensorflow as tf
from privacy.analysis import privacy_ledger
from privacy.dp_query import gaussian_query
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
nest = tf.contrib.framework.nest
else:
nest = tf.nest
def make_optimizer_class(cls):
"""Constructs a DP optimizer class from an existing one."""
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
parent_code = tf.train.Optimizer.compute_gradients.__code__
child_code = cls.compute_gradients.__code__
GATE_OP = tf.train.Optimizer.GATE_OP # pylint: disable=invalid-name
else:
parent_code = tf.optimizers.Optimizer._compute_gradients.__code__ # pylint: disable=protected-access
child_code = cls._compute_gradients.__code__ # pylint: disable=protected-access
GATE_OP = None # pylint: disable=invalid-name
if child_code is not parent_code:
tf.logging.warning(
'WARNING: Calling make_optimizer_class() on class %s that overrides '
'method compute_gradients(). Check to ensure that '
'make_optimizer_class() does not interfere with overridden version.',
cls.__name__)
class DPOptimizerClass(cls):
"""Differentially private subclass of given class cls."""
def __init__(
self,
dp_sum_query,
num_microbatches=None,
unroll_microbatches=False,
*args, # pylint: disable=keyword-arg-before-vararg, g-doc-args
**kwargs):
"""Initialize the DPOptimizerClass.
Args:
dp_sum_query: DPQuery object, specifying differential privacy
mechanism to use.
num_microbatches: How many microbatches into which the minibatch is
split. If None, will default to the size of the minibatch, and
per-example gradients will be computed.
unroll_microbatches: If true, processes microbatches within a Python
loop instead of a tf.while_loop. Can be used if using a tf.while_loop
raises an exception.
"""
super(DPOptimizerClass, self).__init__(*args, **kwargs)
self._dp_sum_query = dp_sum_query
self._num_microbatches = num_microbatches
self._global_state = self._dp_sum_query.initial_global_state()
# TODO(b/122613513): Set unroll_microbatches=True to avoid this bug.
# Beware: When num_microbatches is large (>100), enabling this parameter
# may cause an OOM error.
self._unroll_microbatches = unroll_microbatches
def compute_gradients(self,
loss,
var_list,
gate_gradients=GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
grad_loss=None,
gradient_tape=None):
if callable(loss):
# TF is running in Eager mode, check we received a vanilla tape.
if not gradient_tape:
raise ValueError('When in Eager mode, a tape needs to be passed.')
vector_loss = loss()
if self._num_microbatches is None:
self._num_microbatches = tf.shape(vector_loss)[0]
sample_state = self._dp_sum_query.initial_sample_state(var_list)
microbatches_losses = tf.reshape(vector_loss,
[self._num_microbatches, -1])
sample_params = (
self._dp_sum_query.derive_sample_params(self._global_state))
def process_microbatch(i, sample_state):
"""Process one microbatch (record) with privacy helper."""
microbatch_loss = tf.reduce_mean(tf.gather(microbatches_losses, [i]))
grads = gradient_tape.gradient(microbatch_loss, var_list)
sample_state = self._dp_sum_query.accumulate_record(
sample_params, sample_state, grads)
return sample_state
for idx in range(self._num_microbatches):
sample_state = process_microbatch(idx, sample_state)
grad_sums, self._global_state = (
self._dp_sum_query.get_noised_result(
sample_state, self._global_state))
def normalize(v):
return v / tf.cast(self._num_microbatches, tf.float32)
final_grads = nest.map_structure(normalize, grad_sums)
grads_and_vars = list(zip(final_grads, var_list))
return grads_and_vars
else:
# TF is running in graph mode, check we did not receive a gradient tape.
if gradient_tape:
raise ValueError('When in graph mode, a tape should not be passed.')
# Note: it would be closer to the correct i.i.d. sampling of records if
# we sampled each microbatch from the appropriate binomial distribution,
# although that still wouldn't be quite correct because it would be
# sampling from the dataset without replacement.
if self._num_microbatches is None:
self._num_microbatches = tf.shape(loss)[0]
microbatches_losses = tf.reshape(loss, [self._num_microbatches, -1])
sample_params = (
self._dp_sum_query.derive_sample_params(self._global_state))
def process_microbatch(i, sample_state):
"""Process one microbatch (record) with privacy helper."""
grads, _ = zip(*super(cls, self).compute_gradients(
tf.reduce_mean(tf.gather(microbatches_losses,
[i])), var_list, gate_gradients,
aggregation_method, colocate_gradients_with_ops, grad_loss))
grads_list = [
g if g is not None else tf.zeros_like(v)
for (g, v) in zip(list(grads), var_list)
]
sample_state = self._dp_sum_query.accumulate_record(
sample_params, sample_state, grads_list)
return sample_state
if var_list is None:
var_list = (
tf.trainable_variables() + tf.get_collection(
tf.GraphKeys.TRAINABLE_RESOURCE_VARIABLES))
sample_state = self._dp_sum_query.initial_sample_state(var_list)
if self._unroll_microbatches:
for idx in range(self._num_microbatches):
sample_state = process_microbatch(idx, sample_state)
else:
# Use of while_loop here requires that sample_state be a nested
# structure of tensors. In general, we would prefer to allow it to be
# an arbitrary opaque type.
cond_fn = lambda i, _: tf.less(i, self._num_microbatches)
body_fn = lambda i, state: [tf.add(i, 1), process_microbatch(i, state)] # pylint: disable=line-too-long
idx = tf.constant(0)
_, sample_state = tf.while_loop(cond_fn, body_fn, [idx, sample_state])
grad_sums, self._global_state = (
self._dp_sum_query.get_noised_result(
sample_state, self._global_state))
def normalize(v):
return tf.truediv(v, tf.cast(self._num_microbatches, tf.float32))
final_grads = nest.map_structure(normalize, grad_sums)
return list(zip(final_grads, var_list))
return DPOptimizerClass
def make_gaussian_optimizer_class(cls):
"""Constructs a DP optimizer with Gaussian averaging of updates."""
class DPGaussianOptimizerClass(make_optimizer_class(cls)):
"""DP subclass of given class cls using Gaussian averaging."""
def __init__(
self,
l2_norm_clip,
noise_multiplier,
num_microbatches=None,
ledger=None,
unroll_microbatches=False,
*args, # pylint: disable=keyword-arg-before-vararg
**kwargs):
dp_sum_query = gaussian_query.GaussianSumQuery(
l2_norm_clip, l2_norm_clip * noise_multiplier)
if ledger:
dp_sum_query = privacy_ledger.QueryWithLedger(dp_sum_query,
ledger=ledger)
super(DPGaussianOptimizerClass, self).__init__(
dp_sum_query,
num_microbatches,
unroll_microbatches,
*args,
**kwargs)
@property
def ledger(self):
return self._dp_sum_query.ledger
return DPGaussianOptimizerClass
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
AdagradOptimizer = tf.train.AdagradOptimizer
AdamOptimizer = tf.train.AdamOptimizer
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
else:
AdagradOptimizer = tf.optimizers.Adagrad
AdamOptimizer = tf.optimizers.Adam
GradientDescentOptimizer = tf.optimizers.SGD # pylint: disable=invalid-name
DPAdagradOptimizer = make_optimizer_class(AdagradOptimizer)
DPAdamOptimizer = make_optimizer_class(AdamOptimizer)
DPGradientDescentOptimizer = make_optimizer_class(GradientDescentOptimizer)
DPAdagradGaussianOptimizer = make_gaussian_optimizer_class(AdagradOptimizer)
DPAdamGaussianOptimizer = make_gaussian_optimizer_class(AdamOptimizer)
DPGradientDescentGaussianOptimizer = make_gaussian_optimizer_class(
GradientDescentOptimizer)