tensorflow_privacy/privacy/dp_query/gaussian_query_test.py

162 lines
5.8 KiB
Python
Raw Normal View History

# Copyright 2018, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for GaussianAverageQuery."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from six.moves import xrange
import tensorflow as tf
from privacy.dp_query import gaussian_query
from privacy.dp_query import test_utils
class GaussianQueryTest(tf.test.TestCase, parameterized.TestCase):
def test_gaussian_sum_no_clip_no_noise(self):
with self.cached_session() as sess:
record1 = tf.constant([2.0, 0.0])
record2 = tf.constant([-1.0, 1.0])
query = gaussian_query.GaussianSumQuery(
l2_norm_clip=10.0, stddev=0.0)
query_result, _ = test_utils.run_query(query, [record1, record2])
result = sess.run(query_result)
expected = [1.0, 1.0]
self.assertAllClose(result, expected)
def test_gaussian_sum_with_clip_no_noise(self):
with self.cached_session() as sess:
record1 = tf.constant([-6.0, 8.0]) # Clipped to [-3.0, 4.0].
record2 = tf.constant([4.0, -3.0]) # Not clipped.
query = gaussian_query.GaussianSumQuery(
l2_norm_clip=5.0, stddev=0.0)
query_result, _ = test_utils.run_query(query, [record1, record2])
result = sess.run(query_result)
expected = [1.0, 1.0]
self.assertAllClose(result, expected)
def test_gaussian_sum_with_changing_clip_no_noise(self):
with self.cached_session() as sess:
record1 = tf.constant([-6.0, 8.0]) # Clipped to [-3.0, 4.0].
record2 = tf.constant([4.0, -3.0]) # Not clipped.
l2_norm_clip = tf.Variable(5.0)
l2_norm_clip_placeholder = tf.placeholder(tf.float32)
assign_l2_norm_clip = tf.assign(l2_norm_clip, l2_norm_clip_placeholder)
query = gaussian_query.GaussianSumQuery(
l2_norm_clip=l2_norm_clip, stddev=0.0)
query_result, _ = test_utils.run_query(query, [record1, record2])
self.evaluate(tf.global_variables_initializer())
result = sess.run(query_result)
expected = [1.0, 1.0]
self.assertAllClose(result, expected)
sess.run(assign_l2_norm_clip, {l2_norm_clip_placeholder: 0.0})
result = sess.run(query_result)
expected = [0.0, 0.0]
self.assertAllClose(result, expected)
def test_gaussian_sum_with_noise(self):
with self.cached_session() as sess:
record1, record2 = 2.71828, 3.14159
stddev = 1.0
query = gaussian_query.GaussianSumQuery(
l2_norm_clip=5.0, stddev=stddev)
query_result, _ = test_utils.run_query(query, [record1, record2])
noised_sums = []
for _ in xrange(1000):
noised_sums.append(sess.run(query_result))
result_stddev = np.std(noised_sums)
self.assertNear(result_stddev, stddev, 0.1)
def test_gaussian_sum_merge(self):
records1 = [tf.constant([2.0, 0.0]), tf.constant([-1.0, 1.0])]
records2 = [tf.constant([3.0, 5.0]), tf.constant([-1.0, 4.0])]
def get_sample_state(records):
query = gaussian_query.GaussianSumQuery(l2_norm_clip=10.0, stddev=1.0)
global_state = query.initial_global_state()
params = query.derive_sample_params(global_state)
sample_state = query.initial_sample_state(records[0])
for record in records:
sample_state = query.accumulate_record(params, sample_state, record)
return sample_state
sample_state_1 = get_sample_state(records1)
sample_state_2 = get_sample_state(records2)
merged = gaussian_query.GaussianSumQuery(10.0, 1.0).merge_sample_states(
sample_state_1,
sample_state_2)
with self.cached_session() as sess:
result = sess.run(merged)
expected = [3.0, 10.0]
self.assertAllClose(result, expected)
def test_gaussian_average_no_noise(self):
with self.cached_session() as sess:
record1 = tf.constant([5.0, 0.0]) # Clipped to [3.0, 0.0].
record2 = tf.constant([-1.0, 2.0]) # Not clipped.
query = gaussian_query.GaussianAverageQuery(
l2_norm_clip=3.0, sum_stddev=0.0, denominator=2.0)
query_result, _ = test_utils.run_query(query, [record1, record2])
result = sess.run(query_result)
expected_average = [1.0, 1.0]
self.assertAllClose(result, expected_average)
def test_gaussian_average_with_noise(self):
with self.cached_session() as sess:
record1, record2 = 2.71828, 3.14159
sum_stddev = 1.0
denominator = 2.0
query = gaussian_query.GaussianAverageQuery(
l2_norm_clip=5.0, sum_stddev=sum_stddev, denominator=denominator)
query_result, _ = test_utils.run_query(query, [record1, record2])
noised_averages = []
for _ in range(1000):
noised_averages.append(sess.run(query_result))
result_stddev = np.std(noised_averages)
avg_stddev = sum_stddev / denominator
self.assertNear(result_stddev, avg_stddev, 0.1)
@parameterized.named_parameters(
('type_mismatch', [1.0], (1.0,), TypeError),
('too_few_on_left', [1.0], [1.0, 1.0], ValueError),
('too_few_on_right', [1.0, 1.0], [1.0], ValueError))
def test_incompatible_records(self, record1, record2, error_type):
query = gaussian_query.GaussianSumQuery(1.0, 0.0)
with self.assertRaises(error_type):
test_utils.run_query(query, [record1, record2])
if __name__ == '__main__':
tf.test.main()