2018-12-04 16:50:21 -07:00
|
|
|
# Copyright 2018, The TensorFlow Authors.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
"""Tests for differentially private optimizers."""
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
from absl.testing import parameterized
|
|
|
|
import numpy as np
|
|
|
|
import tensorflow as tf
|
|
|
|
|
2018-12-14 15:31:12 -07:00
|
|
|
from privacy.optimizers import dp_adam
|
|
|
|
from privacy.optimizers import dp_gradient_descent
|
2018-12-04 16:50:21 -07:00
|
|
|
|
|
|
|
|
|
|
|
def loss(val0, val1):
|
|
|
|
"""Loss function that is minimized at the mean of the input points."""
|
|
|
|
return 0.5 * tf.reduce_sum(tf.squared_difference(val0, val1), axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
|
|
|
|
|
|
|
# Parameters for testing: optimizer, nb_microbatches, expected answer.
|
|
|
|
@parameterized.named_parameters(
|
|
|
|
('DPGradientDescent 1', dp_gradient_descent.DPGradientDescentOptimizer, 1,
|
|
|
|
[-10.0, -10.0]),
|
|
|
|
('DPGradientDescent 2', dp_gradient_descent.DPGradientDescentOptimizer, 2,
|
|
|
|
[-5.0, -5.0]),
|
|
|
|
('DPGradientDescent 4', dp_gradient_descent.DPGradientDescentOptimizer, 4,
|
|
|
|
[-2.5, -2.5]), ('DPAdam 1', dp_adam.DPAdamOptimizer, 1, [-10.0, -10.0]),
|
|
|
|
('DPAdam 2', dp_adam.DPAdamOptimizer, 2, [-5.0, -5.0]),
|
|
|
|
('DPAdam 4', dp_adam.DPAdamOptimizer, 4, [-2.5, -2.5]))
|
|
|
|
def testBaseline(self, cls, nb_microbatches, expected_answer):
|
|
|
|
with self.cached_session() as sess:
|
|
|
|
var0 = tf.Variable([1.0, 2.0])
|
|
|
|
data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]])
|
|
|
|
|
|
|
|
opt = cls(learning_rate=2.0, nb_microbatches=nb_microbatches)
|
|
|
|
self.evaluate(tf.global_variables_initializer())
|
|
|
|
# Fetch params to validate initial values
|
|
|
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
|
|
|
|
|
|
|
# Expected gradient is sum of differences divided by number of
|
|
|
|
# microbatches.
|
|
|
|
gradient_op = opt.compute_gradients(loss(data0, var0), [var0])
|
|
|
|
grads_and_vars = sess.run(gradient_op)
|
|
|
|
self.assertAllCloseAccordingToType(expected_answer, grads_and_vars[0][0])
|
|
|
|
|
|
|
|
@parameterized.named_parameters(
|
|
|
|
('DPGradientDescent', dp_gradient_descent.DPGradientDescentOptimizer),
|
|
|
|
('DPAdam', dp_adam.DPAdamOptimizer))
|
|
|
|
def testClippingNorm(self, cls):
|
|
|
|
with self.cached_session() as sess:
|
|
|
|
var0 = tf.Variable([0.0, 0.0])
|
|
|
|
data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]])
|
|
|
|
|
|
|
|
opt = cls(learning_rate=2.0, l2_norm_clip=1.0, nb_microbatches=1)
|
|
|
|
self.evaluate(tf.global_variables_initializer())
|
|
|
|
# Fetch params to validate initial values
|
|
|
|
self.assertAllClose([0.0, 0.0], self.evaluate(var0))
|
|
|
|
|
|
|
|
# Expected gradient is sum of differences.
|
|
|
|
gradient_op = opt.compute_gradients(loss(data0, var0), [var0])
|
|
|
|
grads_and_vars = sess.run(gradient_op)
|
|
|
|
self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0])
|
|
|
|
|
|
|
|
@parameterized.named_parameters(
|
|
|
|
('DPGradientDescent', dp_gradient_descent.DPGradientDescentOptimizer),
|
|
|
|
('DPAdam', dp_adam.DPAdamOptimizer))
|
|
|
|
def testNoiseMultiplier(self, cls):
|
|
|
|
with self.cached_session() as sess:
|
|
|
|
var0 = tf.Variable([0.0])
|
|
|
|
data0 = tf.Variable([[0.0]])
|
|
|
|
|
|
|
|
opt = cls(
|
|
|
|
learning_rate=2.0,
|
|
|
|
l2_norm_clip=4.0,
|
|
|
|
noise_multiplier=2.0,
|
|
|
|
nb_microbatches=1)
|
|
|
|
self.evaluate(tf.global_variables_initializer())
|
|
|
|
# Fetch params to validate initial values
|
|
|
|
self.assertAllClose([0.0], self.evaluate(var0))
|
|
|
|
|
|
|
|
gradient_op = opt.compute_gradients(loss(data0, var0), [var0])
|
|
|
|
grads = []
|
|
|
|
for _ in xrange(1000):
|
|
|
|
grads_and_vars = sess.run(gradient_op)
|
|
|
|
grads.append(grads_and_vars[0][0])
|
|
|
|
|
|
|
|
# Test standard deviation is close to l2_norm_clip * noise_multiplier.
|
|
|
|
self.assertNear(np.std(grads), 2.0 * 4.0, 0.5)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
tf.test.main()
|