forked from 626_privacy/tensorflow_privacy
Internal change.
PiperOrigin-RevId: 325768017
This commit is contained in:
parent
40419b56a3
commit
68651eeddc
1 changed files with 17 additions and 17 deletions
|
@ -196,33 +196,33 @@ class AttackResultsTest(absltest.TestCase):
|
||||||
self.assertEqual(results.get_result_with_max_attacker_advantage(),
|
self.assertEqual(results.get_result_with_max_attacker_advantage(),
|
||||||
self.perfect_classifier_result)
|
self.perfect_classifier_result)
|
||||||
|
|
||||||
@absltest.skip('Will be enabled in the next CL')
|
|
||||||
def test_summary_by_slices(self):
|
def test_summary_by_slices(self):
|
||||||
results = AttackResults(
|
results = AttackResults(
|
||||||
[self.perfect_classifier_result, self.random_classifier_result])
|
[self.perfect_classifier_result, self.random_classifier_result])
|
||||||
self.assertEqual(
|
self.assertEqual(
|
||||||
results.summary(by_slices=True), 'Highest AUC on slice '
|
results.summary(by_slices=True),
|
||||||
'SingleSliceSpec' +
|
'Best-performing attacks over all slices\n' +
|
||||||
'(SlicingFeature.CORRECTLY_CLASSIFIED=True) achieved by ' +
|
' THRESHOLD_ATTACK achieved an AUC of 1.00 ' +
|
||||||
'AttackType.THRESHOLD_ATTACK with an AUC of 1.0\n' +
|
'on slice CORRECTLY_CLASSIFIED=True\n' +
|
||||||
'Highest advantage on ' +
|
' THRESHOLD_ATTACK achieved an advantage of 1.00 ' +
|
||||||
'slice SingleSliceSpec(SlicingFeature.CORRECTLY_CLASSIFIED=True) ' +
|
'on slice CORRECTLY_CLASSIFIED=True\n\n' +
|
||||||
'achieved by AttackType.THRESHOLD_ATTACK with an advantage of 1.0\n' +
|
'Best-performing attacks over slice: "CORRECTLY_CLASSIFIED=True"\n' +
|
||||||
'Highest AUC on slice SingleSliceSpec(Entire dataset) achieved ' +
|
' THRESHOLD_ATTACK achieved an AUC of 1.00\n' +
|
||||||
'by AttackType.THRESHOLD_ATTACK with an AUC of 0.5\n' +
|
' THRESHOLD_ATTACK achieved an advantage of 1.00\n\n' +
|
||||||
'Highest advantage on slice SingleSliceSpec(Entire dataset) achieved ' +
|
'Best-performing attacks over slice: "Entire dataset"\n' +
|
||||||
'by AttackType.THRESHOLD_ATTACK with an advantage of 0.0')
|
' THRESHOLD_ATTACK achieved an AUC of 0.50\n' +
|
||||||
|
' THRESHOLD_ATTACK achieved an advantage of 0.00')
|
||||||
|
|
||||||
@absltest.skip('Will be enabled in the next CL')
|
|
||||||
def test_summary_without_slices(self):
|
def test_summary_without_slices(self):
|
||||||
results = AttackResults(
|
results = AttackResults(
|
||||||
[self.perfect_classifier_result, self.random_classifier_result])
|
[self.perfect_classifier_result, self.random_classifier_result])
|
||||||
self.assertEqual(
|
self.assertEqual(
|
||||||
results.summary(by_slices=False),
|
results.summary(by_slices=False),
|
||||||
'Highest AUC on slice SingleSliceSpec(Entire dataset) achieved ' +
|
'Best-performing attacks over all slices\n' +
|
||||||
'by AttackType.THRESHOLD_ATTACK with an AUC of 0.5\n' +
|
' THRESHOLD_ATTACK achieved an AUC of 1.00 ' +
|
||||||
'Highest advantage on slice SingleSliceSpec(Entire dataset) achieved ' +
|
'on slice CORRECTLY_CLASSIFIED=True\n' +
|
||||||
'by AttackType.THRESHOLD_ATTACK with an advantage of 0.0')
|
' THRESHOLD_ATTACK achieved an advantage of 1.00 ' +
|
||||||
|
'on slice CORRECTLY_CLASSIFIED=True')
|
||||||
|
|
||||||
def test_save_load(self):
|
def test_save_load(self):
|
||||||
results = AttackResults(
|
results = AttackResults(
|
||||||
|
|
Loading…
Reference in a new issue